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A Note from the Editorial Committee
In the early phase of the SARS-CoV-2 (COVID-19) pandemic, the Reagan-Udall 

Foundation for the Food and Drug Administration (FDA Foundation), in collaboration 

with Friends of Cancer Research, and at the request of the FDA, launched the COVID-19 

Evidence Accelerator to rapidly share information on the epidemiology, prevention, and 

treatment of COVID-19. Much of the information shared and generated through the 

parallel approach to analyses leveraged real-world data (RWD). Through the Evidence 

Accelerator, the FDA Foundation in collaboration with the International Society for 

Pharmacoepidemiology (ISPE) has developed this COVID-19 Real-World Evidence 

Primer to provide an overview of available RWD sources and appropriate methods 

for study conduct. An Editorial Committee comprising representatives from the FDA 

Foundation and ISPE guided the development of this primer, and committees of 

authors were responsible for writing each chapter. As the pandemic has exemplified the 

need for rapid evidence generation using existing data sources, it has also emphasized 

the importance of careful design and methodological approaches to support causal 

inferences in RWD studies that can guide clinical and regulatory decision. The Editorial 

Committee hopes that this primer can provide introductory level insight in core 

pharmacoepidemiologic methods for RWE study conduct. The committee would like 

to express its gratitude to all chapter authors and Karen Staman and Amy Bokser for 

editorial support.
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Executive Summary: COVID-19 Real-World Evidence Primer
In response to the COVID-19 pandemic, the use of real-world data (RWD) for research 

accelerated, supporting the global response to the COVID-19 pandemic via conduct of 

rigorous studies on the safety and effectiveness of diagnostics, drug repurposing, and 

novel therapies and vaccines in near real time. The use of RWD has many advantages, 

most notably that data typically are collected as a part of routine health care and are 

available expeditiously and often for large populations. However, there are special 

considerations for the use of these data for the secondary purpose of research. To learn 

from the evolving lessons of addressing the COVID-19 pandemic and to bolster the 

future use of real-world evidence (RWE), we created this primer to describe the RWD 

ecosystem. We included key principles of study design and potential sources of bias, 

examples of COVID-19 studies that use RWD, and mechanisms for disseminating RWE 

gleaned from the conduct of RWD research. We also introduce the COVID-19 Evidence 

Accelerator initiative that was established during the pandemic to support RWD study 

conduct.1 

Chapter 1: Overview of Real-World Data
RWD include information recorded in electronic health records (EHRs); administrative 

claims; patient-reported outcomes (generally responses surveyed directly from patients 

on feeling and function); patient-generated health data (from apps, smartwatches, 

pedometers, etc.); product- and disease-specific registries; and information about 

environmental factors and social determinants of health. These RWD sources can both 

describe the patient experience and depict an overview of population health. Although 

much work had been done to lay the groundwork for the use of RWD, including the 

FDA RWE framework 2 as part of the 21st Century Cures Act, 3 many challenges for the 

use of RWD to support causal inferences of treatment effects exist — challenges that 

were further compounded by the need for accelerated research and evidence during 

the pandemic. To generate reliable RWE from RWD, the data should meet acceptable 

thresholds for validity and provenance in addition to being fit for the intended purpose. 

Data governance, privacy, and security are also important factors for RWD studies. 

Chapter 2: Methods in Real-World Evidence Generation – Study Design
There are various observational study designs that are typically used to generate RWE, 

including between-person designs (cohort and case-control studies) and within-person 

designs, which compare different time windows (i.e., lengths of time) within the same 
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person. The concept of a target trial, an observational study that aims to emulate the 

key features of a randomized control trial, provides a useful framework to think about 

potential biases in RWE studies. Descriptive designs examine disease or exposure 

patterns in the population, focusing on characteristics related to person, place, and 

time. This chapter describes the key features of each design, the types of questions that 

can be answered, and advantages and disadvantages of each type of design.

Chapter 3: Methods in Real-World Evidence Generation –  
Sources of Error
Because RWD are not collected for research purposes, there are potential sources of 

error that are typically tied to the context in which the data were originally collected. 

These potential sources of error, as well as the failure to consider these issues in 

study design and / or analysis, can cause a variety of biases, such as confounding or 

misclassification bias. In addition, investigators can compound such problems, resulting 

in problems such as selection bias or immortal time bias. This chapter describes common 

mechanisms for these biases in observational research and how to mitigate them. 

Chapter 4: Examples of COVID-19 Real-World Evidence Studies
In response to the unprecedented impact and evolution of COVID-19, collaboration 

was critical for the launch of rigorous studies to address the evolving needs across the 

globe. This chapter describes selected example studies: 

• Cohort study presented in the context of target trial emulation: BNT162b2   

 mRNA COVID-19 Vaccine in a Nationwide Mass Vaccination Setting

• Cohort study: Effect of pre-exposure use of hydroxychloroquine on COVID-19   

 mortality: a population-based cohort study in patients with rheumatoid arthritis   

 or systemic lupus erythematosus using the OpenSAFELY platform

• Case-control study: Effectiveness of Covid-19 Vaccines in Ambulatory and    

 Inpatient Care Settings

• Self-control case series: Risk of acute myocardial infarction and ischaemic stroke   

 following COVID-19 in Sweden: a self-controlled case series and matched cohort   

 study

• Drug utilization study: Use of repurposed and adjuvant drugs in hospital patients   

 with COVID-19: multinational network cohort study

• Diagnostic test evaluation study: Optimizing SARS-CoV-2 Surveillance in the   

 United States: Insights From the National Football League Occupational Health   

 Program
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Chapter 5: Major Multi-stakeholder Initiatives - Defining the Future of 
COVID-19 Observational Research
The pandemic of COVID-19 laid bare the limited interoperability capacity of the existing 

health care data infrastructure for assembling data to quickly address critical questions 

about a novel disease. Several initiatives have emerged to address this shortfall using 

RWD for COVID-19 observational research. This chapter features a selection of multi-

stakeholder COVID-19 RWD initiatives that have contributed to our understanding of 

the COVID-19 pandemic and/or are structured to continue to provide opportunities for 

observational research about emerging issues related to the disease.

Six COVID-19 RWD multi-stakeholder initiatives are also covered in depth in this 
chapter:
• Observational Health Data Science and Informatics (OHDSI): Initiative leveraging  

 existing international distributed health care data in an interdisciplinary    

 collaborative that facilitates open-source analyses to conduct observational studies   

 on COVID-19 disease characterization, treatment, and care 

• FDA Sentinel: Food and Drug Administration (FDA) system leveraging a distributed  

 data network with a common data model as well as other standalone data sources   

 to conduct COVID-19-related studies

• OpenSAFELY: Initiative that enables the access of multiple United Kingdom (UK)   

 government data sources in a reliable and protected platform to address COVID-19   

 research needs

• Vaccine Monitoring Collaboration for Europe (VAC4EU): International non-profit   

 association set up with the aim of conducting collaborative real-world analysis on   

 vaccines. The entity was founded as a result of the Innovative Medicines Initiative-  

 funded ADVANCE project that was initiated after the H1N1 pandemic

• COVID-19 Research Database: Cross-industry, cross-sector initiative composed of   

 institutions that donate technology services, health care expertise, and de-identified   

 data in the United States (US) for COVID-19 observational research. The data    

 repository contains integrated, linked data sets from multiple sources, from the more  

 traditional RWD (claims, EHR) to life insurance claims, consumer data, and mortality   

 records 

• COVIDRIVE: Public-private partnership leveraging the existing vaccine effectiveness  

 platform in Europe to comprehensively examine COVID-19 vaccine effectiveness   

 across a range of products and assist vaccine companies in fulfilling their regulatory   

 obligations 
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Chapter 6: The COVID-19 Evidence Accelerator
The COVID-19 Evidence Accelerator initiative 1 was launched by the Reagan-Udall 
Foundation for the FDA (FDA Foundation), 4 in collaboration with Friends of Cancer 
Research (Friends) 5 and on behalf of the FDA, to provide a unique open venue for 

major data organizations, government and academic researchers, and health systems 

to share information about COVID-19 efforts, and to convene a community to urgently 

address questions about COVID-19.

Chapter 7: Communicating about Real-World Evidence
The pandemic illustrated the need for rapid, reliable dissemination of information 

— not only among researchers, but to other stakeholders including regulators, 

clinicians, and other health care workers, as well as to the general population. This 

demand for evidence that can guide regulatory and clinical decision-making must 

be weighed against the need for adequate vetting of RWE. The growing skepticism 

regarding scientific evidence is a critical problem that highlights the need for timely 

and trustworthy communication. This chapter provides practical guidance about 

dissemination, including the publication processes for developing a communications 

plan, creating messaging and communication channels, and transmitting internal 

communications. 

Conclusion
Although RWD was being used for research prior to COVID-19, the pandemic pushed 

researchers to be more collaborative, be more efficient, react faster, and disseminate 

information more frequently, all while ensuring adequate study quality and high 

scientific standards. By learning from our experiences, we can build on the momentum 

of these collaborations to continue to address COVID-19 as well as other diseases and 

important public health issues.
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Chapter 1: 
Overview of 

Real-World Data

Background on Real-World Data
In response to the COVID-19 pandemic, use of real-world data (RWD) for research 

accelerated, supporting the global response to the pandemic via conduct of rigorous 

studies in the safety and effectiveness of diagnostics and of existing and newly 

approved therapies and vaccines in near real time. RWD include information recorded 

in the electronic health record (EHR), administrative claims, patient-reported outcomes 

(including surveys about how a patient feels and functions), patient-generated health 

data (from apps, smartwatches, pedometers, etc.), product- and disease-specific 

registries, mortality data, and information about environmental factors and social 

determinants of health. Taken together, these RWD sources can enable a broad and 

specific picture of a patient’s journey and population health as a whole. The use of RWD 

has many advantages, most notably that data, typically collected as a part of routine 

health care, are available expeditiously and commonly for large populations. However, 

there are special considerations for the use of these data for the secondary purpose 

of research because they are created in individual health care systems for the primary 

purposes of patient care and billing. 
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As part of the 21st Century Cures Act (Cures Act) of 2016, the Food and Drug 

Administration (FDA) created Framework for FDA’s Real-World Evidence Program to 

satisfy these provisions and bolster the use of RWD for approval of new indications 

for medical products and use in post-approval study requirements.1 More recently, 

the FDA published a series of draft guidance documents, including a guidance on 
“Real-World Data: Assessing Electronic Health Records and Medical Claims Data To 
Support Regulatory Decision-Making for Drug and Biological Products.”2 In the past 

two decades, large networks in the US, such as Sentinel 3–5 and the Patient-Centered 

Outcomes Research Network (PCORnet),6–8 were launched to use administrative claims 

and electronic health record data for evaluation and research purposes. Globally, other 

countries have built similar data repositories, particularly countries with universal health 

care systems.

Definitions from the Framework for FDA’s Real-World Evidence Program 1

Real-World Data (RWD): data relating to patient health status and/or the 

delivery of health care routinely collected from a variety of sources. 

Real-World Evidence (RWE): clinical evidence regarding the usage and 

potential benefits or risks of a medical product derived from analysis of RWD.

When the COVID-19 pandemic started, a foundation had been laid such that researchers 

could effectively launch studies to investigate COVID-19-related questions using 

RWD, including the burden of COVID-19 infection, the effectiveness of therapies 

(pharmacologic and non-pharmacologic treatments and vaccines), and the impact of 

programs and policies on disease outcomes.9 RWD are poised to address key themes, 

such as those listed in Table 1.1.
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Table 1.1. Example Themes to Explore with RWD

Characterization of COVID-19 Disease

COVID-19 Specific Treatment Utilization and Outcomes 

Influence of Concomitant Diseases and Comorbidities on COVID-19 Outcomes

Health Disparities and Health Equity Research

Drug Repurposing to Treat COVID-19

Longitudinal Impact of COVID-19 on Health Conditions

Post-Acute Sequelae of SARS CoV-2 infection (PASC)

COVID-19 Testing Patterns

COVID-19 Vaccine Uptake and Immunity Studies

Use of RWD may allow researchers to quickly generate clinical evidence while reducing 

the burden and cost of research conduct in some cases as compared to randomized 

controlled trials. Importantly, the RWD must be fit-for-purpose – that is, reliable, valid, 

and relevant. While not every research question can be addressed with RWD, the ability 

to generate real-world evidence (RWE) if adequate RWD are available depends further 

on the application of appropriate methodology based on epidemiologic principles to 

answer the research question.1

Types of Real-World Data 
Data in the United States and many other countries are distributed across a complex 

ecosystem of thousands of institutions. Each type of RWD generation within various 

layers of health care delivery has a different set of strengths and potential weaknesses. 

Data in Europe are distributed across many nations, which have their own health care 

systems and vocabularies. Whether a real-world data set (or combination of data sets) is 

fit-for-purpose depends on the on the research question.10 

As part of its 2018 framework for using real-world data to support regulatory decision 

making, the FDA has identified a number of potential sources of real-world data:1
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Electronic health records (EHRs)
EHRs contain information collected in the ordinary course of hospital and 

ambulatory care  visits and can include structured data on diagnoses, 

procedures, laboratory results, vital signs,  medication orders, and medication 

administrations, as well as information that is unstructured, such as clinical 

notes.11 Structured data can include preliminary administrative claims, such as 

billing diagnoses and procedure codes (e.g., ICD, CPT).

Administrative claims
Administrative claims include information attached to charges submitted 

by health care providers for reimbursement by private insurers and federal 

insurance programs (e.g., Medicare and Medicaid). These administrative data 

typically include basic demographic characteristics and enrollment information 

in addition to detail on diagnoses and procedures associated with medical 

encounters and outpatient pharmacy prescription fills, or other specialized data 

such as charges from skilled nursing facilities or home health care providers. In 

comparison to the billing and diagnosis codes from EHRs, administrative claims 

from payors have been adjudicated for payment and thus have been somewhat 

verified, although are often delayed compared to EHR data. 

Patient-generated health data (PGHD)
PGHD are “wellness and/or health-related data created, recorded, or gathered 

by individuals for themselves (or by family members or others who care for 

an individual).”12 These data can be generated from devices such as smart 

watches, internet-connected scales, phone apps, pedometers, and home 

blood pressure monitors. PGHD can include patient reported outcomes 

(PROs), which report the status of a patient’s health directly from the patient.13 

Registries
Most patient registries can be categorized as either product or disease/

condition registries. Product registries are typically created to prospectively 

capture data to support post-marketing surveillance of medical products. 

Disease or condition registries are defined by condition (e.g., pregnancy, HIV) 

to manage patient care and/or address questions related to the natural history 

of the disease or condition as well as comparative effectiveness and/or safety 

of treatments. 
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Environmental factors and social determinants of health
Environmental factors and social determinants of health (SDoH) such as 

socioeconomic status, food insecurity, and access to transportation may 

or may not be captured in EHRs, although collection of this information is 

increasing.14 Administrative claims may have supplemental information related 

to patients’ eligibility (e.g., employment status, income level). Researchers can 

also use geographic information, such as zip code, to obtain information about 

neighborhood level characteristics that may provide insight into SDoH.

MORTALITY DATA
Despite being one of the more common endpoints in clinical studies of treatment 

safety and effectiveness, information on deaths, including date and cause, is often 

not captured in health care data. In these cases, health care data must be linked to 

external sources of mortality data (e.g., death certificates, vital statistics systems, civil 

registries) to capture death outcomes. In the US, sources of data on death include but 

are not limited to the National Death Index, State Vital Statistics, the Social Security 

Administration Death Master File, Medicare Master Beneficiary Summary File, and the 

National Association of Statistics and Information Systems Fact of Death Service.15

Linking Real-World Data Sets to Answer Key Questions
RWD can be linked to allow investigators to enhance their depth and breadth in an 

effort to capture integrated, longitudinal care and health outcomes.16,17 Linkages across 

RWD sets can be done via clear text matching or privacy preserving methodologies, 

depending on the necessary privacy framework. The use of large linked data sets can 

improve the statistical precision of estimates made with smaller data sets, but biases 

that appear due to missing information do not dissipate with a large sample size. Data 

linkages can help address missing information, thereby reducing measurement biases 

in large RWD analyses. Moreover, triangulating data points across multiple data sources 

not only mitigates potential missingness inherent to RWD, but it can also facilitate data 

validation and enhance accuracy. While linkages can be advantageous, paradigms 

regarding the evaluation of the aggregated RWD as fit-for-purpose remain. Care must be 

taken to assess the reliability and validity of the data linkage. For example, linkages may 

further create issues with selection bias; reduced geographic, demographic, or clinical 

representation; missingness; and harmonization problems that could affect analysis.9
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Assessing Fitness for Purpose
The research team should assess whether the target data set (including the data source, 

any linkages that may be performed, and the subsequent data operations on the 

combined data set) is fit for purpose. 1,2,18 The Structured Process to Identify Fit-For-

Purpose Data (SPIFD) is one example of a systematic process for conducting feasibility 

assessments that can be used to evaluate whether a data source is fit for decision 

making, and  for documenting the rationale for selected data sources.19

Real-World Data Governance
Data governance comprises several core concepts that are critical to the secure and 

appropriate use of RWD to generate RWE. These core concepts include: data privacy 

and de-identification; data security; and IRB review. 

Data Privacy and De-Identification: As more RWD are collected digitally and 

available for analysis, there is a risk that a patient’s privacy could be compromised. 

Much of the data available in RWD sources are subject to US Health Insurance 
Portability and Accountability Act (HIPAA) and EU General Data Protection Regulation 

(GDPR) provisions, and there are well understood methods for removing identifiable 

information and then using those data for research purposes without the explicit 

consent of the patient. In recent years, there has been renewed focus on privacy-

preserving methods for linking or analyzing records across different data sets. These 

novel methods include privacy-preserving record linkage, differential privacy, secure 

multi-party computing, federated learning, and hashing and pseudonymization. These 

approaches vary in complexity, maturity, and adoption, but each represents a way to 

de-identify patient information while maintaining the ability to link patient data across 

different data sets. 

HIPAA provides for two methods to assure that the re-identification risk is low for a 

given data set: One is safe harbor, in which data elements that contain personally 

identifiable information (PII) are removed. A second method is expert determination, 

which assures that there is a very small risk of re-identification in the combined or 

linked data set. A research team must pair the appropriate method of linkage with the 

necessary HIPAA-compliant data evaluation, preparation, and (if necessary) certification 

by an expert determination service. 
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Data Security:
Data security is fundamental to any infrastructure design for a given RWD project. 

In the US, the Federal Information Security Management Act (FISMA) defines three 

components of secure data: 

1. Confidentiality: the data are protected from unauthorized disclosure

2. Integrity: the data are protected from unauthorized modification or destruction

3. Availability: the data are protected from disruption of access 20

A data breach can threaten any of the three components and can be the result of 

ransomware and cyberattacks (such as the WannaCry ransomware attack), 21 data 

theft by employees, loss of devices, and human error. Data security for a RWD project 

begins with a governance and management framework that typically includes a data 

use agreement (DUA) and a formal plan for how the data will be used and secured. 

Considerations include technical components (such as cloud versus premise-based 

security), access policies, physical security and training, data protection, endpoint 

security, network security, defect and vulnerability management, identity management, 

monitoring, and independent testing and review. 

IRB review: 
Once the data source definition, fit-for-purpose assessment, and data privacy 

considerations have been incorporated into a study protocol, the research team should 

ensure that they have identified the appropriate IRB process to engage with for review. 

Conclusion
Well conducted research begins by articulating a clear, discrete question of interest. 

One of the first steps in generating RWE to address the research question is to identify 

a fit-for-purpose RWD source. In assessing potential data sources, consideration 

should be given to the PICO of interest – i.e., the Population [or Problem or Patient], 

Intervention [or Exposure], Comparator [or Control or Comparison], and Outcome. 

Specifying the PICO helps elucidate the care settings in which the patients, exposure, 

comparator, and outcomes are likely to be identified, informing decisions about the 

type and source of data likely to be relevant and valid for the research question. After 

selection of a fit-for-purpose data set, a well-defined study question in the PICO can 

help guide the selection of appropriate study design, approaches for assessing key 

study variables, and methods for addressing bias in RWE studies, which are the subject 

of Chapters 2 and 3.
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In this chapter, we discuss 4 different observational study design families commonly 

used with real-world data (RWD):

1. Target trial paradigm, which typically uses cohort study designs to emulate    

 randomized controlled clinical trials (RCTs) 

2. Between-person designs, including cohort and case-control studies

3. Within-person designs, which compare different time windows (i.e., lengths of   

 time) within the same person

4. Descriptive designs, which examine disease or exposure patterns in the    

 population, focusing on characteristics related to person, place, and time

The chapter begins with the target trial paradigm and the concept of a randomized 

controlled trial, therefore providing an intuitive introduction into core methodological 

considerations when generating real-world evidence (RWE). Studies that utilize the 

target trial paradigm most commonly employ cohort study designs with a between-

person approach, which is further addressed in section two of this chapter. The third 

section of the chapter introduces within-person designs, in which different time periods 

within the same person are compared. Finally, the fourth section covers descriptive 

study designs. 

1.Target Trial Paradigm
Author: Bradley MC

What is it used for?
Causal questions on the comparative effectiveness and safety of COVID-19 treatments 

and vaccines are ideally addressed in well-designed and well-conducted RCTs using 

protocol-based outcome ascertainment and adjudication. However, if an RCT is not 

feasible, ethical, or timely, or is cost prohibitive, data from observational studies 

using best pharmacoepidemiologic practices 1,2 might offer a valuable alternative. To 

illustrate these study design practices, analogies to RCTs have been made: the target 

trial paradigm applies design principles from RCTs to the analysis of observational 

data to explicitly emulate the hypothetical RCT that would have been conducted. This 

hypothetical RCT is referred to as the target trial.3 
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The target trial is specified using a structured process to refine the causal goal of the 

research, formulate meaningful questions, and evaluate appropriate observational data 

sources and causal inference analysis strategies. If the target trial is specified as precisely 

as possible for the question of interest, it informs the design of the observational study. 

The inferences drawn from the observational study are then based on the principles 

applied in the target trial to assess a causal effect.4 

A protocol specifying the target trial and detailing the emulation in observational data 

should include seven key domains:5 

1. Eligibility criteria 

2. Treatment strategies 

3. Treatment assignment 

4. Start and end of follow-up

5. Outcomes 

6. Causal contrasts (intention-to-treat effect, per-protocol effect) 

7. Statistical analysis

Eligibility criteria for the observational study should be informed by the target trial, in 

most cases a hypothetical pragmatic trial.6 Pragmatic trials are designed to compare 

effectiveness of interventions in real-life practice. In contrast, typical RCTs are explanatory 

trials aimed to test whether the intervention works under optimal conditions. 

Key considerations in emulating the target trial, which can help identify and minimize 

potential bias and confounding in the observational study, include: 

1. Emulation of random assignment of treatment at baseline; all relevant    

 confounding factors should be balanced to ensure comparability     

 (exchangeability) of the treatment cohorts. 

2. Proper specification of time zero; time zero is the point at which follow-up for   

 outcomes begins, and it should be synchronized with determination of eligibility   

 and assignment of treatment strategies. In the observational study, emulation of   

 the time zero of the target trial is usually achieved by defining it as the time when   

 an eligible patient initiates an intervention.7

Observational studies designed according to a framework that allows causal inference 

such as the target trial paradigm can estimate causal effects, rather than associations.8 

Specifying the target trial can help with methodologic evaluation of observational 

COVID-19 Real-World Evidence Primer | Chapter Two 24



studies. It can highlight deviations from ideal study conditions and allow identification 

of potential biases in the observational study — for example, when certain information 

required for emulation is not available5 — as well as any changes in eligibility criteria or 

other parameters as a result.9 

What kinds of questions can be addressed?
The target trial paradigm can be used to evaluate important causal questions on 

COVID-19 treatment effectiveness and safety, and on COVID-19 vaccine effectiveness 

in real world settings. Target trial emulations using RWD are designed to overcome 

limitations seen in the COVID-19 vaccine RCTs, such as inability to perform adequate 

subgroup analysis due to sample size limitations, restrictive inclusion criteria, and a 

highly controlled setting that is difficult to replicate in real world mass vaccination 

programs.10 Using RWD may allow inclusion of groups often excluded from traditional 

RCTs, such as older adults and patients with comorbidities. Also, RWD can address 

questions that might be outside of traditional RCT conduct , such as duration of vaccine 

protection against infection, transmission, severe disease, death, and comparative 

effectiveness of different vaccines.11 The following illustrates the use of the target trial 

paradigm to inform pharmacoepidemiologic studies of COVID-19 treatments.

Dagan et al.11,12 used RWD from a large health care organization in Israel to emulate 

a target trial evaluating the effectiveness of the BNT162b2 mRNA vaccine. Evaluated 

outcomes included: infection with SARS-CoV-2, symptomatic COVID-19, and 

COVID-19–related hospitalization, severe illness, and death among 596,618 vaccinated 

persons and 596,618 controls. The findings suggested high effectiveness of the 

BNT162b2 vaccine for preventing symptomatic COVID-19 in the real world, and high 

effectiveness for preventing outcomes such as hospitalization, severe illness, and 

death; similar to the vaccine efficacy reported in the RCT.13 The large observational 

study (1,192,236 participants compared to 21,720 in the RCT) allowed examination 

of outcomes in specific subpopulations that the RCT was not sufficiently powered to 

evaluate, such as those with multiple coexisting conditions. The finding that vaccine 

effectiveness might be slightly lower in those with more coexisting conditions is 

notable. However, a limitation to the use of RWD was the speed of vaccination, which 

contributed to frequent censoring of matched unvaccinated controls, especially among 

older individuals, and a reduction in the average follow-up time.
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In the absence of data from RCTs, Gupta et al.14 used RWD from a large multi-

site cohort, the Study of the Treatment and Outcomes in Critically Ill Patients With 

COVID-19 (STOP- COVID),15 to emulate a target trial. The study estimated the effect 

of early treatment with tocilizumab on mortality in COVID-19 patients in the intensive 

care unit (ICU). Again, the large size of the emulated study allowed subgroup analyses 

not always possible in the RCTs that were subsequently conducted. The results showed 

that patients treated with tocilizumab in the first 2 days of ICU admission had an almost 

30% lower risk of death compared with those not treated with tocilizumab. The United 

Kingdom RECOVERY RCT later reported similar results.16 However, other RCTs did not 

show the same mortality benefit.17–19

Similarly, in the absence of evidence from RCTs, Al-Samkari et al.20 emulated an RCT as 

a target trial using RWD on COVID-19 patients admitted to ICUs in the US. In this study, 

survival was compared in patients who received therapeutic anticoagulation in the 2 

days after ICU admission to those who did not receive therapeutic anticoagulation. 

Those who received anticoagulation in the first 2 days of ICU admission had similar 

in-hospital survival compared with those who did not. These results supported the 

recommendations of several professional societies against broad empirical therapeutic 

anticoagulation in patients with COVID-19.21,22

Gatto et al. used HealthVerity data to emulate a hypothetical target trial to examine 

the effectiveness of dexamethasone in preventing 28-day mortality among hospitalized 

patients with moderate to severe COVID-19.23 While the RECOVERY RCT already 

examined this question in the UK, the authors sought to emulate RECOVERY as a 

hypothetical target trial with varied design elements, and tailored for US practice and 

US patients. 23 

Using data from routine care in France, the target trial paradigm was also used to 

inform an observational study on the effectiveness of hydroxychloroquine for patients 

hospitalized with a COVID-19 infection and requiring supplemental oxygen. The 

findings suggested that hydroxychloroquine treatment at 600 mg/day added to 

standard of care was not associated with a reduction of admissions to ICUs or death 7 

days after hospital admission compared to standard of care alone.24,25 These findings 

were consistent with data from RCTs that found hydroxychloroquine to be ineffective for 

treatment of COVID-19.26 
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What are the benefits and limitations of this design?
Emulating a hypothetical target trial can improve the conduct of observational studies, 

decreasing some common biases and confounding by emulation of random assignment 

and correct specification of time zero. For a robust observational study, other issues 

such as attrition, changes in treatment, and misclassification of outcomes should be 

accounted for, but these are discussed elsewhere. Misspecifying time zero can lead 

to selection and time-related biases such as immortal time bias.27 For example, an 

observational study on postmenopausal hormone therapy and heart disease reported 

>30% lower risk of the outcome in current users vs. never users,28 while an RCT reported 

>20% higher risk.29 Prevalent hormone therapy users were included in the observational 

design, whereas the RCT only followed incident users. As prevalent users were depleted 

of patients who were susceptible to thromboembolic risk imposed by postmenopausal 

hormone therapy, which would manifest early during exposure, they were less likely to 

experience the outcome.30 When the observational data were re-analysed using a new-

user design (resembling a trial), the findings aligned with those of the RCT.31 Incorrectly 

specifying time zero and including prevalent users 33,34 can also cause postbaseline 

information (collected during treatment) to be used in defining baseline characteristics.7 

Constructing causal diagrams when specifying the target trial helps identify baseline 

confounders (non-colliders [See Chapter 3]) that should be balanced and colliders that 

should be left uncontrolled to prevent collider bias.35 The process of specifying a target 

trial helps to explicitly define the causal question, better understand the data that are 

required, and generally improve the quality of observational studies.5 

Target trials are pragmatic, and therefore cannot always emulate key elements of an 

ideal RCT. For example, RWD cannot be used to emulate a placebo-controlled trial (an 

active comparator is generally needed), a trial with blinding (patients are typically aware 

of their treatment), treatment strategies that do not exist in the real world (enforcing 

adherence to a treatment), or any other type of monitoring that is not reflective of 

real-world practice.3 However, the pragmatic nature of the emulated target trial is not 

necessarily considered a limitation when the aim is to compare treatments to reflect 

use in the real world. RWD needed for the target trial emulation might not be available 

in the chosen data source (e.g., availability of clinical laboratory results for a specific 

disease biomarker). Data availability might also limit the ability to adequately balance 

comparison groups with regard to critical outcome risk factors that are associated with 

treatment assignment, thus acting as confounders.5 
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2.Between-Person Designs
Authors: Gatto N, Rassen J

What is it used for?
Between-person observational study designs include cohort studies and case-control 

studies.36,37 

Cohort studies (specifically parallel-group cohort studies) compare exposed 

and unexposed groups of patients over time for the occurrence of the outcome 

of interest. Cohort study designs have been used to examine the effectiveness 

and safety of COVID-19 treatments, and can be designed to emulate a 

hypothetical parallel-group randomized clinical trial. 

Case-control studies differ from cohort studies with respect to patient selection, 

first identifying patients with the disease or outcome of interest (cases) and 

then a sample of those without the disease or outcome (controls). Case-

control studies compare these cases and controls and examine differences in 

their preceding exposure status. Case-control studies may be sampled from 

a corresponding cohort study (i.e., a nested case-control study) or sampled 

from an underlying source population representing a hypothetical cohort if a 

full cohort study was performed (i.e., all available controls would have been 

included, rather than just a sample). Cases and controls are selected that 

recreate the exposure distribution in the underlying source population. 

For the examination of COVID-19 vaccine effectiveness, there is growing interest in using 

a type of case-control study—the test-negative study design—in which patients with a 

positive COVID-19 test are considered cases and those with a negative test, controls, 

and vaccine status is the preceding exposure of interest.38–40 The rationale for this study 

design is to ensure cases and controls have equal access to health care and health 

seeking behavior by including only persons with an encounter (here, a COVID-19 test) for 

surveillance of the outcome. Of note, while this design may help overcome differential 

outcome misclassification where COVID testing is dependent on certain patient 

characteristics including vaccination status or symptoms, outcome misclassification may 

still occur because of low test sensitivity, specificity, and timing of the diagnostic assay.41,42 

Thompson et al. conducted a simulation study, reporting that the presence of both 

exposure and outcome misclassification led to an underestimation of the effectiveness of 

COVID-19 vaccines.39 
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Data from health care settings such as primary and specialty care, hospitals, emergency 

rooms, and urgent care allow access to cases and controls who can then be queried 

for previous exposures. If longitudinal RWD are available and no primary data 

ascertainment is required, both nested case-control and cohort studies are feasible. 

Because nested case-control studies typically provide little advantage or efficiency over 

conducting cohort studies using existing RWD, and should yield a substantially similar 

result,43 we focus on study design considerations for cohort studies throughout this 

section. With that said, case-control designs can be useful if key variables are difficult or 

expensive to measure, or if nuances of timing between exposure and outcome are of 

particular interest.
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Term and Definition Key Considerations

Index date: 
Date of cohort entry or the 
date the patient enters the 
analytical study population

• Index date is considered “time zero” and anchors temporal 

parameters such as covariate assessment, exposure, follow-up period, 

and outcomes on the longitudinal patient timeline.44 

• It is critical to specify “time zero” and ensure proper alignment 

of meeting the eligibility criteria, treatment exposure, and start of 

follow-up. Hernan et al. provide an in-depth discussion of the “target 

trial failures” of misaligning time zero with eligibility and treatment 

assignment.7 

• While randomized controlled trials use the date of randomization as      

the study entry date and beginning of follow-up, selecting the index 

date for cohort studies is not always straightforward and is dependent 

on the research question and care setting. For example, studies in the 

ambulatory outpatient setting may assign treatment initiation as the 

index date. Depending on the specific research question, studies in 

the inpatient setting may define the index date as the exact hospital 

admission date (see Figure 2.1a) or treatment initiation, which may be 

at or after hospital admission (see Figure 2.1b). 

Eligibility criteria: 
Inclusion and exclusion 
criteria applied in identifying 
the patients to be included 
in the study

• Existence of sufficient observable patient-time is also often 

included as an eligibility criterion to allow an assessment of baseline 

characteristics and outcomes during follow-up. In administrative 

claims data—where information on patients’ characteristics and the 

occurrence of outcomes is obtained from insurance claims—enrollment 

dates for insurance coverage are used to determine observability.45 For 

example, eligibility criteria often include COVID-19 diagnosis based on 

diagnosis codes or positive laboratory test results.

Study Population 
For COVID-19, the population of interest often includes patients diagnosed with 

COVID-19 in the ambulatory outpatient setting (with mild disease) or inpatient setting 

(with moderate to severe disease). Identifying these analytic cohorts requires careful 

consideration of several study design parameters (see Table 2.1). 

Table 2.1. Key Study Design Parameters
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Person Time

(a) Exposure assessment 
occurs on the day of 
hospital admission

(b) Outcome follow-up 
starts on initiation of 
treatment (index) during 
hospital admission

COVARIATE ASSESSMENT

COVARIATE ASSESSMENT

PRE-TREATMENT

Admission
(Index) 

Admission 

OUTCOME FOLLOW-UP

Discharge 

OUTCOME FOLLOW-UP

EXPOSURE

EXPOSURE ASSESSMENT

Person Time

Treatment Initiation 
(Index) 

Figure 2.1. Defining	the	index	date	for	cohort	studies	in	the	inpatient	setting.	Adapted	from	Franklin	

et al. Clinical Pharmacology & Therapeutics 2021.48

Treatment Exposure 
The new-user design (also known as incident-user design) and prevalent-user design are 

common approaches for identifying drug exposure (see Figure 2.2). The new-user study 

design has been previously well-described.34,46,47 Under this design, patients who are 

new users of a drug of interest—with new use defined as using the drug with no prior 

use over a prespecified washout period—are compared to patients who are new users 

of another drug (active comparator) or patients who did not initiate the drug of interest 

(non-user comparator). The index date for new-user design with an active comparator is 

typically the day of medication initiation for both groups (see Figure 2.2b). For example, 

in a study to evaluate whether corticosteroid A reduces the risk of inpatient mortality 

compared to corticosteroid B, the index date would typically be the date of inpatient 

treatment initiation of the first corticosteroid.
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Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient 7

(a) Observed 
Data 

Data 
Start 

Data
End

Calendar Time

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient 7

(b) New User 
Design 

Study Time

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient 7

(c) Prevalent User Design 

Study Time

High Risk Treatment 

Medium Risk Treatment 

Low Risk Treatment 

Person Time With No Treatment

INDEX INDEX

In contrast, the prevalent-user study design examines both current and new initiators of 

treatment during the study period.48 The index date for patients in the prevalent-user 

design would vary. As seen in Figure 2.2c, the index date for patients 4 – 7 only would 

be treatment initiation, while the index date for patients 1 – 3 would occur at different 

periods of high-, medium-, and low-risk of the outcome event after treatment initiation 

depending on the patient. For example, in a study evaluating the effect of medications 

on COVID-19 severity that are commonly used but not specifically indicated for 

COVID-19, such as angiotensin converting enzyme (ACE) inhibitors/angiotensin-

receptor blocker (ARB), patients may have had prior exposure to the medication 

for indications other than COVID-19. If so, the new-user design may be deemed 

inappropriate (or infeasible) in this particular setting and a prevalent-user design may be 

considered in which all medications used at the time of or shortly following a positive 

COVID-19 test may be evaluated as the treatment exposure. Patients would then be 

followed from the time of treatment to ascertain COVID-19-related outcomes.

Figure 2.2. New-user and prevalent-user design. Adapted from Yoshida et al. Nat Rev. Rheumatol. 
2015.61 (a) Illustrates a hypothetical study cohort during the study period, as represented by the white, 
unshaded area. The color bars represent treatment and high-, medium-, and low-risk for the outcome 
event during treatment exposure. The gray line indicates untreated person time. (b) The new user design 
shows the index date as the date of treatment initiation. The cohort includes only newly treated patients 

4–7.	(c)	The	prevalent	user	design	shows	a	defined	index	date	including	all	the	treated	patients	1–7.

COVID-19 Real-World Evidence Primer | Chapter Two 32



More recently, the prevalent new-user design has emerged as another approach to 

identify exposure to the treatment of interest. A prevalent new-user design creates 

comparison groups by matching patients on time-based propensity scores, allowing 

patients who have switched treatments to enter the study.49–51 The prevalent new-user 

design can result in greater statistical power than conventional new-user designs by 

allowing all or a majority of exposed patients to enter the study, versus designs that 

substantially limit the eligible population. Another advantage of this study design is 

its ability to mimic a randomized controlled trial since both exposed and unexposed 

patients are matched based on time.52 

Choice of Comparator or Control
One of the most critical considerations in designing a cohort study is ensuring balance 

between the exposure and comparator groups with regard to factors that may influence 

the outcome, such as calendar time (given the rapidly evolving nature of COVID-19 

spread, treatment, and management), disease severity, comorbidities (e.g., diabetes 

and cardiovascular disease), and race and social determinants of health.48 An active 

comparator is another medication with a similar indication and is ideal to balance 

measured characteristics between the two treatment groups and minimize confounding 

by indication. Paired with the new user design, assuming the two treatment options 

are clinically interchangeable, an active comparator also minimizes confounding by 

severity and starts patients at a similar time zero (start of a new treatment), thus allowing 

emulation of a target trial, with the index date defining the date of treatment initiation 

for each group. 

With rapidly changing treatment regimens for COVID-19, an active comparator may 

not be possible if there is no standard of care available, or if standard of care is rapidly 

evolving. Another option is selecting non-users of the treatment of interest, sometimes 

called “best available care,” i.e., patients with a COVID-19 diagnosis who did not 

receive the treatment of interest. A major concern about this design is confounding, 

including confounding by indication if patients receiving and not receiving the 

treatment are inherently different in unmeasurable ways, as well as prescribing patterns 

and drug access which may introduce additional unmeasurable bias. Identifying an 

appropriate index date for the non-user group is also challenging since there is no 

treatment initiation date to anchor on, and one must avoid using a treatment index 

date that inadvertently incorporates immortal time into the study design (see Chapter 
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Figure 2.3. Illustrative example of risk-set sampling with users and non-users. 

3 for more on immortal time bias).7,52,53 Employing a risk-set sampling design to identify 

comparators who have not (yet) initiated the treatment of interest and assigning the 

same study entry date to that comparator allows exposed patients to be matched 

with unexposed patients on important factors such as calendar time (e.g., month 

of hospitalization), disease severity (e.g., need for oxygen support), other relevant 

medications, etc., at the time each exposed patient initiates their treatment.48,54 For 

example, Figure 2.3 illustrates a simplified cohort of patients hospitalized for COVID-19 

during the study period. Patients 1, 4, and 7 received inpatient treatment for COVID-19 

and were risk-set sampled with 1:2 matching to non-users. Non-user patients will be 

included in the referent comparator group.
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Outcomes and Covariates
For studies using RWD, outcomes are generally defined by applying algorithms to 

recorded codes, the sensitivity and specificity of which is highly dependent on the type 

of the data source and data availability. Clinical covariates, such as use of inpatient 

oxygen support, may also be derived from the data. The importance of clinical 

expertise to define the case or covariates definitions and develop algorithms cannot be 

overstated, especially given the rapidly-changing nature of COVID-19 care. 

The care setting and point-of-service for COVID-19 is also an important consideration 

(e.g., outpatient setting or inpatient setting). For example, common inpatient setting-

based outcomes when looking at the effectiveness of COVID-19 treatment regimens 

may include death, use of mechanical ventilation, or hospital discharge; these 

variables—and in the United States, death in particular—may not always be readily 

available in commonly-used existing data sources. Best practices also require reporting 

the performance or validity of case definition algorithms; referencing the positive 

predictive values,  sensitivity, or specificity if available; and providing sensitivity analysis 

to evaluate the impact of outcome misclassification.55,56 Refer to Section 3.4 for more 

details of misclassification. 

During the outcome assessment (follow-up) period, censoring due to treatment 

crossover needs to be considered as well.32,57,58 For example, in evaluating the 

effectiveness of dexamethasone among hospitalized COVID-19 patients for mortality 

over a 28-day period, follow-up can begin one day after the treatment index and 

continue until the earliest occurrence of mortality, end of follow-up, or discharge from 

the hospital. This “initial-treatment” approach approximates the intention-to-treat 

approach often used in trials and assumes patients continue their initial treatment.25, 

26 An “as-treated”-style analysis can also be conducted that censors patients upon 

treatment changes, and the implications of either approach should be carefully 

weighted based on the postulated pharmacological pathway (e.g., Should follow-up 

time without the treatment be counted towards the treatment effect if it is expected 

that the drug effect ceases shortly after the drug is discontinued?).57 

Lastly, the overall study design should be visually communicated to show the temporal 

relationship between the index date and eligibility criteria, covariate assessments, and 

follow-up period to assess outcome events.44 Such standardized displays for allowing 

readers to quickly understand how investigators approached the research problem is 

particularly important in COVID-19 studies given the volume and variety of research 

being published.
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What kinds of questions can be addressed?
Between-person studies can address effectiveness and safety research questions. For 

example: 

• What is the effectiveness of hydroxychloroquine with or without azithromycin among  

 hospitalized COVID-19 patients on mechanical ventilation, hospital discharge, or in-  

 hospital mortality?59 

• Are angiotensin-converting enzyme (ACE) inhibitors and angiotensin-receptor   

 blockers (ARBs) safe among patients diagnosed with COVID-19?60 

What are the benefits and limitations of this design?
The advantage of a carefully-controlled cohort study design is the ability to emulate a 

target trial by specifying time zero to approximate randomization in a trial (i.e., eligibility 

criteria are met, treatment is assigned, and follow-up period begins) and adjust for 

potential confounders,3,7 which—in the absence of measurement and selection biases—

allows for the determination of causality between the exposure and outcome of interest. 

As such, the cohort study design is well-suited to examine medication effectiveness 

and safety in outpatient and inpatient hospitalization settings. Cohort studies also 

allow multiple outcomes to be examined for a single treatment of interest (for example, 

primary outcome of mortality and secondary outcomes of hospital discharge). 

Cohort study designs may not be well-suited due to insurmountable challenges in 

identifying appropriate comparison groups or the inability to minimize potential 

confounding or biases. For example, if the vast majority of the population is vaccinated 

or potential unmeasured differences between patients choosing and not choosing 

vaccination exist, a self-controlled study design may be superior. 

Key considerations in relation to sources of error related to study designs are covered in 

Chapter 3.

3.Within-Person Design
Author: Iwagami M

What is it used for?
Within-person study designs, also known as self-controlled study designs, case-only 

designs, or Self-controlled Crossover Observational PharmacoEpidemiologic (SCOPE) 
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Figure 2.4. Graphical representation of self-controlled case series (SCCS) and case-crossover (CCO)

studies, mainly include self-controlled case series (SCCS) and case-crossover (CCO).62 

These designs compare different time windows (i.e., lengths of time) within the same 

person, instead of comparing different people in between-person study designs such 

as cohort and case-control studies. An SCCS compares the occurrence of an outcome 

(event) during periods with and without exposure in the same person, whereas a CCO 

compares periods with and without the outcome for exposure (see Figure 2.4). Table 2.2 

contrasts the between-person and within-person study designs. 

The within-person study designs are used for electronic health record (EHR) research, 

sometimes together with the between-person study designs for the same research 

question. In addition, when primary data collection is newly planned, the within-person 

study design can be efficient, because only data for people with the outcome of interest 

are needed. In addition, the within-person study designs are feasible if most people in 

the study population were already exposed (to a vaccine for children,63 for example), 

whereas a small number (proportion) of non-exposed people make the between-person 

study designs infeasible.
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Exposure-anchored Outcome-anchored

Between-person 
study designs

Cohort study (comparing people 
with and without exposure)

Case-control study (comparing people 
with and without an outcome)

Within-person 
study designs

Self-controlled case series 
(comparing periods with and 
without exposure)

Case-crossover design (comparing 
periods with and without an outcome)

Cohort study design
(a between-person study design)

Self-controlled case series
(a within-person study design)

General research 
question

Is there a (causal) association between COVID-19 infection and MI?

More specific 
research question

Is the risk of MI increased among 
people with COVID-19 infection, 
compared to people without 
COVID-19 infection?

Is the risk of MI increased during 
periods with COVID-19 infection, 
compared to periods without 
COVID-19 infection?

Population General population People with MI

Exposure People with COVID-19 infection Periods with COVID-19 infection

Comparison People without COVID-19 infection Periods without COVID-19 infection

Outcome Incidence of MI Incidence of MI

Table 2.2. Between-person and within-person study designs

What kinds of questions can be addressed?
Between-person study designs and within-person study designs can be used for the 

same research question, applied somewhat differently.64 Table 2.3 shows the difference 

of population, intervention/exposure, comparison, and outcome [PI(E)CO] between a 

cohort study and SCCS for the research question on the association between COVID-19 

infection and myocardial infarction (MI). The more specific research question that 

has been tailored to each study design is somewhat different. However, if there was 

a true causal association between COVID-19 and MI, both study designs should find 

a statistically significant association between them and reach the same conclusion 

(provided that they were well powered and appropriately conducted, minimizing biases 

inherent in each study design). 

Table 2.3. Difference of PI(E)CO between a cohort study and self-controlled case series for an example 

of the association between COVID-19 and myocardial infarction (MI)64
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What are the benefits and limitations of this design?
The main strength of within-person study designs is that they can minimize confounding 

factors that do not change over time (e.g., sex, genetics, habitual healthy or unhealthy 

behaviors). This is because the effects of these factors are cancelled out by design, 

even if they are unknown or unmeasured. Therefore, the within-person study designs 

can be used when there is concern about unmeasured or unknown confounding factors 

in between-person study designs. There are some examples in which an apparent 

association between an exposure and an outcome in a between-person study design 

was not confirmed by the within-person study design, possibly suggesting unmeasured 

confounding inherent in the between-person study design (or violation of the key 

assumptions that would allow use of the within-person study design, as shown below).65 

However, within-person study designs cannot be used for all research questions. The 

SCCS and CCO designs require several assumptions specific to each study design. 

In the SCCS, (i) occurrence of an event should not (appreciably) affect subsequent 

exposures or opportunity for subsequent observation, which can happen when, for 

example, the outcome is fatal, (ii) the background risk for the event must be constant 

within intervals, and (iii) events must be independently recurrent or rare.66 In the CCO 

there should be no substantial change in exposure trends during the study period. 

Assumptions for both designs are best met when the exposure is transient (intermittent) 

and the outcome onset is abrupt (sudden), and there is no within-person confounding 

within the periods of observation.67 If these assumptions are violated, within-person 

study designs can result in biased estimates.

Judging whether (or not) these assumptions are met is case-by-case, usually based on 

biological and clinical knowledge, whereas some statistical tests have been proposed 

to test (part of) the assumptions.67 An article from Petersen et al. shows an example 

of how to assess SCCS assumptions, with some solutions for if the assumption is 

violated, for the association between COVID-19 vaccination and thrombocytopenia and 

thromboembolism events, which was indeed examined within SCCS design using UK 

electronic health records.66,68,69 

4. Descriptive Designs
Author: Lerro C

Descriptive epidemiology involves analysis of disease or exposure patterns in the 

population, focusing on characteristics related to person, place, and time (see Table 
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Characteristic Example COVID-19 Application 

Person Age, sex, race, 
socioeconomic 
status

Identification of vulnerable populations to provide targeted interventions. 
Increasing numbers of pediatric COVID-19 cases might provide evidence 
to support mask mandates in schools.

Place Country, city, 
neighborhood, 
hospital 
catchment area

Geographic differences in COVID-19 transmission metrics might be 
used to understand the role of local public health guidance or vaccine 
implementation strategies in reducing case counts and hospitalizations.

Time Month, season, 
year

Evaluation of trends over time can inform planning for increased 
hospitalizations if case counts are increasing, or relaxing of public health 
measures if case counts are decreasing.

2.4).70 Descriptive studies are broadly used for both scientific and administrative public 

health purposes. 

For scientific purposes, descriptive studies can inform our understanding of disease 

etiology. We can make inferences about the underlying causes of disease by monitoring 

how disease incidence and prevalence change over time; differ with respect to age, 

sex, and race; and vary geographically. These studies cannot answer causal questions. 

However, information gleaned from descriptive studies might be used to generate 

hypotheses for high-quality rigorously controlled observational studies or trials. 

Descriptive studies are used for administrative purposes to establish public health 

priorities, allocate funding, and evaluate the effectiveness of public health interventions. 

A health department monitoring uptake of COVID-19 vaccination might observe a sharp 

increase following implementation of a vaccine lottery, most pronounced in persons age 

20-29. These descriptive results might indicate that this strategy is effective in motivating 

younger adults to get vaccinated. 

In the context of the COVID-19 pandemic, descriptive data have become ubiquitous as 

a means of informing the public about patterns of testing, treatment, and disease (see 

Table 2.4 for examples of person, place, and time in descriptive studies of COVID-19). 

These descriptive data allow individuals and governments to take steps to protect 

personal and public health, respectively. Worldwide, many localities and federal agencies 

regularly publish information on case counts, vaccination rates, testing, hospitalizations, 

and deaths and use descriptive data to monitor the medical product supply chain to 

anticipate potential drug shortages. 

Table 2.4. Person, Place, and Time in Descriptive Studies
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What kinds of questions can be assessed?
Descriptive studies are best suited to assessing patterns (person, time, place) of disease 

and exposure incidence and prevalence. In the context of pharmacoepidemiology, 

the exposure of interest is often a therapeutic or vaccine. Descriptive studies of drug 

utilization can demonstrate inappropriate use of therapeutics and underutilization of 

necessary therapeutics, including the impact of drug shortages on patterns of utilization 

and vice versa. A study conducted across Denmark, Finland, Iceland, Norway, and 

Sweden described public health measures as well as patterns of clinical management 

and outcomes of patients with severe COVID-19 in the ICU during the first wave of the 

COVID-19 pandemic.71 Authors found substantial variability in the critical care response 

across these countries, including in the use of invasive mechanical ventilation and use 

of certain treatments (e.g., IL-6 antagonists, hydroxychloroquine, and corticosteroids). 

A strength of this study is that it uses high-quality data to evaluate demographic 

factors, clinical characteristics, and patterns of ICU care across several countries, 

allowing authors to hypothesize potential reasons for variation in ICU mortality rates 

that could be addressed further using an inferential study design. This study also 

highlighted limitations of the RWD that were used; for example, some variables were 

missing for certain countries including use of specific types of therapeutics and certain 

comorbidities such as obesity.

A descriptive analysis in the National COVID Cohort Collaborative evaluated inpatient 

use of hydroxychloroquine, remdesivir, and dexamethasone among 137,870 US 

adults hospitalized with COVID-19.72 The authors were interested in evaluating both 

prevalence of use and trends in use over time. Hydroxychloroquine and remdesivir 

received emergency use authorization (EUA) from the Food and Drug Administration 

(FDA) for treatment of COVID-19 during 2020 (hydroxychloroquine EUA was later 

rescinded) and remdesivir and dexamethasone were included in the National Institutes 

of Health treatment guidelines for some adults hospitalized for COVID-19. The 

authors found that 6.3%, 21.2%, and 39.1% of the 137,870 patients were treated with 

hydroxychloroquine, remdesivir, and dexamethasone, respectively. Trends in use over 

time indicated that hydroxychloroquine use increased following the EUA and started 

declining after the EUA was revoked. The authors hypothesized that lower use of 

remdesivir compared to dexamethasone might be due to reported remdesivir shortages 

during the study time period. Following release of results of the RECOVERY trial, which 

demonstrated clinical benefit of dexamethasone among patients with mechanical 

ventilation or oxygen, 78-84% of patients who had invasive mechanical ventilation 
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were treated with dexamethasone or other corticosteroids. The findings suggest 

that dexamethasone might be underutilized among patients who are mechanically 

ventilated, and that wide variation in patterns of dexamethasone and remdesivir use 

across health centers indicates differences in patient case mix, drug access, treatment 

protocols, and quality of care. The lower-than-expected use of dexamethasone and 

variation across health centers might have been a consequence of drug shortages, 

indicating that hospitals restricted use to patients who were critically ill.

In a multinational study conducted across 11 data sources in 4 countries (the US, Spain, 

China, and South Korea), authors described the use of repurposed and adjuvant drugs 

in patients admitted to the hospital with COVID-19.73 Commonly used repurposed 

drugs included hydroxychloroquine, azithromycin, combined lopinavir and ritonavir, 

and umifenovir, and the prevalence of use across data sources and countries varied 

widely. Though trends in use of repurposed drugs varied widely over time and often 

increased or decreased following regulatory guidance or highly publicized trial 

results, trends across data sources and even countries were generally similar. Authors 

reported large variation in use of adjunctive drugs across data sources, with the 5 

most used treatments being enoxaparin, fluoroquinolones, ceftriaxone, vitamin D, and 

corticosteroids. This study fills an important knowledge gap by describing the drugs 

most used in this patient population and comparing use across different institutions 

worldwide. Inferential studies might be used to quantify the risk and benefit of these 

treatments in the management of patients with COVID-19.

Descriptive studies can also inform our understanding of disease etiology and might 

be used to identify vulnerable individuals who are at greater risk of disease compared 

to the general population. For example, early descriptive studies in the COVID-19 

pandemic noted that rates of COVID-19 infection and COVID-19 mortality were higher 

among individuals with pre-existing hypertension.74 Based on this descriptive evidence 

and biologic plausibility, several observational studies evaluated this association with 

rigorous control for potential confounders, yet found no clear relationship between 

hypertension and severe COVID-19 independent of age, sex, and other risk factors. 

What are the benefits and limitations of this design?
An important strength of descriptive studies that has not previously been highlighted is 

that they can often be done at low cost with existing data. Many descriptive studies can 

repurpose existing surveillance data to answer their research questions. For example, 

studies have used vital records and census data to estimate excess deaths attributed to 
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the COVID-19 pandemic in many countries, including the US, Italy, Norway and Sweden, 

England and Wales, Guatemala, and Korea. Other descriptive studies, particularly 

those seeking to evaluate patterns of drug utilization, might instead use large existing 

administrative databases.75 

Descriptive studies are not suited to answering causal research questions. This study 

design does not involve comparative analysis or rigorous consideration of concerns 

known to impact interpretation of observational studies that aim to make causal 

inferences including confounding, measurement bias, and selection bias. A descriptive 

analysis of monoclonal antibody use in a large claims data source highlights both 

the capabilities of descriptive designs as well as the limitations.76  Of the 211 million 

patients in the data source, 69,377 received monoclonal antibody treatments from 

January 2020 through April 2021. Bamlanivimab accounted for 85% of administered 

treatments, though trends indicated that combination bamlanivimab and etesevimab 

use was increasing. The study used outpatient data only, and without data from the 

inpatient setting, results underestimate overall monoclonal antibody use. The authors 

found that patients who received monoclonal antibodies were less likely to have 

Medicaid insurance compared to patients in the database overall, indicating possible 

barriers to care for these patients. Among patients receiving monoclonal antibodies, 

missing data was systematically lower for certain variables (e.g., race/ethnicity and 

household income) compared to patients in the database overall, which might impact 

the inferences made regarding these patient characteristics. 

Descriptive studies are unique in that the purpose is often to generate research 

questions for inferential analyses as opposed to providing definitive answers. In 

addition, they might be able to provide important data to inform public health and 

clinical decision-making even in settings where there would be significant challenges to 

conducting a well-designed inferential study. When used correctly, descriptive studies 

can be a powerful tool to inform our understanding of disease etiology, inform public 

health, and monitor drug uptake and utilization.
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When using real-world data, key potential sources of systematic error or bias include 

confounding, selection bias, immortal time bias, and measurement bias resulting from 

misclassification and missing data. In this chapter we describe the sources of error and 

provide solutions for detecting and handling these errors.

Chapter 3: Methods 
in Real-World 

Evidence Generation 
- Sources of Error
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1.Confounding
Author: Li H

Description
Confounding is the distortion of the treatment-outcome association when the groups 

being compared differ with respect to variables that influence the outcome. Real-

world evidence (RWE) studies can be challenging in observational settings where 

treatments are not randomly prescribed. Structurally, confounding occurs when a 

variable is a common cause of the exposure and outcome, as illustrated in Figure 3.1. 

In other words, confounders must be distributed unequally among the groups being 

compared, be associated with the outcome of interest, and cannot be intermediate 

factors between the exposure and outcome.1 As a note of caution, authors sometimes 

use the term “selection bias” to refer to structural confounding in that treatments might 

be “selected” for patients based on certain characteristics that might be risk factors for 

outcomes. While selection bias is the result of differential selection into one or more 

of study groups, it may induce confounding if the characteristic on which differential 

selection is centered is associated with both the exposure and outcome of interest. 

These are distinct biases, as illustrated in Figure 3.1 and as described below in Section 2 

of this chapter on selection bias.

In comparing drug treatments, confounding by indication is a common issue that occurs 

because patients are treated for a specific condition with a particular drug 2 or because 

patients have conditions that are contraindications to treatment with the medication, 

and these conditions or contraindications affect the outcome of interest. For example, 

patients with a history of gastric problems may preferentially receive cyclooxygenase-2-

inhibitors (e.g., celecoxib) rather than traditional non-steroidal anti-inflammatory agents 

such as ibuprofen, which will result in a higher risk for gastric ulcer or bleeding in the 

celecoxib group. 3 To the extent that confounders (variables that are associated with 

both exposure and outcome) are measured in real-world data, observational studies can 

address potential bias due to confounding. However, many real-world data sources lack 

information on important prognostic variables, including confounders. 

Restriction, such as to patients with evidence of a particular condition, is a common 

strategy to reduce confounding in real-world evidence studies. However, even a study 

including patients with the same condition but differing levels of disease severity might 
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be susceptible to strong confounding. For example, patients with COVID-19 infection 

can experience a wide range of clinical manifestations, from no symptoms to critical 

illness; furthermore, patients with certain underlying comorbidities are at a higher risk 

of progressing to severe COVID-19 or mortality. The prognosis of COVID-19 infection 

differs by underlying disease severity. 4 When comparing treatments for COVID-19, it is 

therefore critical to account for disease severity and prognosis at the time of treatment 

initiation. In addition, it is important to recognize how treatment is evaluated when 

comparing different lines of therapy or dose levels in in RWE studies (e.g., second  or 

third line therapy or higher doses are likely given to patients with more severe disease), 

as it might result in confounding by severity when the association reflects the underlying 

disease severity rather than the study drug effect. 5 

1: Confounding by indication/contraindication
Paranjpe et al. published a retrospective cohort study examining the 

association between therapeutic anticoagulation and in-hospital mortality 

among patients with COVID-19.6 Several commentators have raised 

concerns about potential confounding by indication, alongside other 

concerns including unmeasured confounding and immortal time bias.7 

One of the concerns was that clinicians prescribe anticoagulation for 

some patients hospitalized with COVID-19 based on evidence of clotting 

and clinical judgment of their medical needs, while patients who do not 

receive anticoagulation typically do not have a clinical indication or may 

have contraindications such as advanced age, prior hemorrhage, or other 

bleeding risk factors. Without a full accounting of the treatment indications 

and contraindications that might influence treatment decisions and affect 

mortality, uncontrolled confounding is likely to affect the results. 

2: Confounding by disease severity
Schultze et al. examined the association between use of inhaled 

corticosteroids and COVID-19-related death in patients with chronic 

obstructive pulmonary disease (COPD) or asthma using the OpenSAFELY 

platform. To the extent that asthma and COPD severity affect corticosteroid 

use and COVID-19-related death, confounding by severity is possible.8 The 

investigators sought to measure and adjust for underlying health conditions 

that may differ between individuals prescribed inhaled corticosteroids 
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and those using other medications for asthma and COPD. The evaluation 

for confounding by severity was further addressed using negative control 

outcomes. A persistent harmful association between inhaled corticosteroid 

use and non-COVID-19 related death was also observed, which could be 

related to the severity of disease requiring treatment exposure, suggesting 

that the real-world data source did not capture all markers of disease severity, 

resulting in a distorted exposure-outcome association. Negative control 

outcomes can be used to detect9 and correct for otherwise unaddressed 

sources of confounding.10

Why it is a problem?
Confounding is one of the major threats to observational studies and is frequently 

cited as an important difference regarding the internal validity of observational studies 

and randomized trials. Confounding by indication and severity can be particularly 

problematic in real-world evidence studies conducted in the context of a rapidly 

evolving pandemic as treatment decisions might vary across clinical, functional, and 

behavioral patient characteristics. Treatment decisions might also vary over time as 

trends in determinants of treatments are frequently changing as evidence of outcome 

risk factors and which treatments are effective evolve quickly. Physicians prescribe drugs 

based on the most current diagnostic and prognostic information available at the time 

of treatment decision-making, and in the context of current, but potentially rapidly 

changing, practice patterns. Regional and temporal patterns of infection transmission 

and the waxing and waning of different SARS-CoV-2 variants associated with different 

degrees of outcome severity can also be a source of confounding in the pandemic. 

Investigators must carefully consider and account for how these factors might vary over 

the course of a study period.11 

 

How to handle it
Schneeweiss et al. outline a framework for addressing measured and unmeasured 

confounding.12 

Measured confounders can be addressed either in the design, by restriction or 

matching, or in the analysis through standardization (or weighting), stratification, or 

multivariable regression modeling. Propensity scores are a commonly used tool to 

implement many of these strategies. Variables that are not measured in the available 
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data but could be available in a subset could be addressed via 2-stage sampling or 

external adjustment approaches. Unmeasured variables can sometimes be addressed 

by certain design and analysis strategies. For example, a self-controlled design is not 

subject to between-person confounding, although it is susceptible to time-varying 

confounding. Instrumental variable analysis, which relies on leveraging a variable that is 

associated with the exposure, but not the outcome, except through its association with 

the exposure, can yield valid results even in the presence of unmeasured confounding 

of the treatment-outcome association. 

In observational studies, confounding by indication and severity may be strongest 

and most difficult to adjust for when comparing treated with untreated persons, since 

individuals who require and use a medication may be clinically different from those that 

do not.13 Comparing patients exposed to a particular treatment to patients exposed 

to an active comparator addresses confounding by both measured and unmeasured 

factors to the extent that the treatments are used interchangeably. Using appropriate 

active comparators has been shown to reduce the impact of confounding by indication 

by balancing some unmeasured patient characteristics.14,15

In certain clinical contexts, important confounders may be unmeasured and should be 

addressed by available methods.16 Quantitative bias analysis, including the E-value,17 

allows researchers to correct or bound their estimates by making certain assumptions 

about the direction and magnitude of potential unmeasured confounding. The E-value 

represents the smallest magnitude of the association between the unmeasured 

confounder and the exposure and the unmeasured confounder and the outcome that 

would explain away an observed association between an exposure and an outcome. 

Quantitative bias analysis methods, including empirical calibration using negative 

control outcomes, can also be used to correct for unmeasured confounding.

2.Selection Bias
Author: Li H

Description
Selection bias occurs “when the estimate of occurrence or of etiologic effect obtained 

from a study population differs systematically from the estimate that would have 
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been obtained had the source population been available.”18 Selection bias can be 

present when the criteria used to select patients into study cohorts (e.g., exposed and 

unexposed cohorts) are inherently different. Much of the scientific evidence informing 

health policy and clinical decision making during the COVID-19 pandemic has been 

provided from non-interventional, observational studies. Although the evaluation 

of data obtained from non-interventional studies offers insights into medication 

effectiveness, caution is required when interpreting results. Selection bias can occur 

when studies use data sets with selection mechanisms that govern how patients enter 

the data set or cohort, such as when eligibility is based on patients admitted to the 

hospital, tested for active infection, or who volunteer to participate in a study, as 

recently articulated by Griffiths et al.19 

Directed acyclic graphs are useful for depicting causal structures and can be used to 

illustrate common biases, including selection bias. Structurally, selection bias occurs 

when an investigator conditions on a common effect of 2 or more variables, such 

as when conditioning on effects of both an exposure (or a descendent of exposure) 

and an outcome (or a descendent of the outcome). This is sometimes referred to as 

collider stratification bias, and it induces a statistical relation between the exposure and 

outcome that is not causal. A structural classification of bias and confounding, illustrated 

in Figure 3.1, distinguishes between biases resulting from conditioning on common 

effects (“selection bias”) and those resulting from the existence of common causes of 

exposure and outcome (“confounding”), which is described above.20 Immediately below 

are some example studies that have highlighted concerns in selection bias in the setting 

of COVID-19 real world evidence studies. 

Selection bias: Conditioning on the 
covariate, which is caused by both exposure 
and outcome, induces a non-causal 
association between exposure and outcome.

Confounding: The covariate is a common 
cause of the exposure and the outcome, 
inducing a non-causal association between 
exposure and outcome.

EXPOSURE OUTCOME COVARIATECOVARIATE EXPOSURE OUTCOMECOVARIATE

Figure 3.1. Selection bias in the association between outpatient medication collected at hospital 
admission and outcomes occurring during hospitalization
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Several studies have been published to evaluate the association between outpatient 

medications in relation to SARS-CoV-2 infection, recovery, or mortality using records of 

outpatient medications collected at hospital admission for COVID-19. These include 

studies of oral medications including diphenhydramine,21 angiotensin-converting 

enzyme inhibitors and angiotensin II receptor blockers,22–24 HMG-CoA reductase 

inhibitors (statins).25  Griffith and colleagues describe several scenarios in which 

restricting study cohorts to individuals who are hospitalized with COVID-19 or who 

are tested for SARS-CoV-2 can induce selection bias.19 For example, conditioning on 

having a SARS-CoV-2 test could induce selection bias in a study that seeks to determine 

whether cigarette smoking is associated with COVID-19 severity if health care workers 

are less likely to smoke but more like to be tested for SARS-CoV-2 as compared to non-

health care workers. In this situation, SARS-CoV-2 is a potential collider because both 

being a health care worker and COVID-19 severity are likely to be causes of testing. 

Therefore, conditioning on SARS-CoV-2 testing would induce a potential statistical, but 

non-causal, relation between smoking and COVID-19 severity.

Selection bias in the association between inpatient medication use and clinical 
outcomes during hospitalization 
In any observational cohort study aiming to compare 2 or more treatment strategies, 

selection bias can occur when the criteria for selecting patients into—and particularly 

excluding patients from— the cohort is different between groups. For example, 

in one study, exposure was based on receiving hydroxychloroquine26 within 48 

hours of hospitalization. Hydroxychloroquine-exposed patients were compared to 

unexposed patients. Unexposed patients were defined as those who did not initiate 

hydroxychloroquine at any time during hospitalization; those patients who initiated 

treatment more than 48 hours after hospital admission were therefore excluded in the 

primary analysis. Because hydroxychloroquine was as a treatment for severe COVID, 

excluding from the unexposed group those patients who went on to initiate treatment 

after the 48-hour exposure assessment window effectively selected out from the 

unexposed group many patients who deteriorated and went on to have poor outcomes. 

A similar design was used to compare remdesivir exposure to non-exposure.27 Looking 

beyond the start of follow-up to exclude patients from the study can introduce selection 

bias in addition to immortal time bias (see Section 3.3). 
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Self-selection into studies, missing data, and loss to follow-up are threats to the 
validity of exposure-outcome association estimates 
Prospective studies in which COVID-19 status can be determined through voluntary 

participation, such as survey data that are linked to administrative records28 or mobile 

phone-based applications,19 can be subject to selection forces that govern who 

is included in the study, which can affect the generalizability of study findings. As 

population testing for COVID-19 is not generally performed in random samples, studies 

have found that participants who volunteer for scientific studies conditional on having 

had a test are more likely to be highly educated, health conscious, and non-smokers as 

compared to the general population.19 

Both missing data when selection is based on availability of such data (see Section 3.4) 

and differential losses to follow-up (i.e., informative censoring) can introduce selection 

bias. Differential losses to follow-up occur when participants drop out of a study or can 

no longer be followed for reasons related to the outcome(s) of interest and when this 

dropout occurs more frequently in more treatment groups.29 

Why it is a problem?
Selection bias can compromise the internal validity of a study by distorting the 

association between exposure and outcomes. Furthermore, collider stratification bias 

can also be introduced when making statistical adjustments for variables that lie on the 

causal pathway between an exposure and outcome, when confounders (i.e., common 

causes) exist between these intermediate variables and the outcome of interest. 

Independent of this potential form of collider stratification bias, conditioning variables 

that are intermediates on the causal pathway between exposure and outcome can also 

obscure the ability to identify a causal effect. 

How to handle it
While loss to follow-up, self-selection, and missing data are generally not fully avoidable 

in real-world data studies, careful study design can reduce these issues and mitigate 

resulting bias. Researchers can also mitigate selection bias by clearly defining the target 

population of interest and examining potential impact by implementing sensitivity 

analyses if they have quantitative knowledge about factors influencing selection in their 

study.30 
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In case-control studies, selection bias can be reduced by sampling controls in a manner 

to ensure that they will represent the exposure distribution in the population that 

gave rise to the cases. When determinants of selection or censoring are known and 

measured, inverse probability weighting can be used to address structural selection 

biases through the creation of sampling weights or censoring weights.31 Approaches to 

addressing missing data are described below.
 

3.Immortal Time Bias
Author: Renoux C

Description
While several time-related biases have been described in pharmacoepidemiologic 

studies,32 immortal time bias is the most common of these biases in studies of drug 

effectiveness and safety, especially in the context of COVID-19.16 Latency considerations 

are also relevant when evaluating vaccines against COVID-19.

The study of drug effectiveness and safety presents unique challenges that stem 

from the time-varying nature of drug exposure. Moreover, the use of previously 

collected data enables design flexibility that may, if some elements of the design are 

not adequately implemented, introduce time-related biases. Properly defining and 

analyzing treatment status over follow-up time is important. Indeed, inappropriate 

accounting and classification of exposure over time can introduce immortal time 

bias.33–35  Immortal time corresponds to a period of follow-up during which, by design, 

the outcome of interest (death or another outcome) cannot occur. In cohort studies, 

immortal time is typically introduced when exposure status is defined based on a 

treatment administered at some point during follow-up. The time period between 

disease diagnosis or cohort entry and the first treatment is “immortal” because 

the patient has to survive or be outcome-free (owing to censoring of events in the 

analysis) to be classified as treated. Immortal time bias is then introduced when this 

immortal period between diagnosis or cohort entry and the first treatment is either 

misclassified as exposed or excluded from the analysis rather than correctly accounted 

for as unexposed. Similarly, requiring a minimum number of prescriptions or duration 

of treatment for the definition of exposure but considering patients as exposed from 
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the first treatment introduces immortal time bias. Given that individuals move in and 

out of health systems or insurance plans, it can also be tempting to require patients to 

have a certain amount of enrollment in follow-up (e.g., one year), which also may create 

immortal time.

What does it look like in practice?
Several recent cohort studies assessing the effectiveness of various drugs in patients 

hospitalized with COVID-19 defined exposure on the basis of treatment received at 

any time during follow-up or within a limited time period (such as the first 48 hours of 

hospitalization) in their primary analysis. 23,26,36–39  However, patients were considered 

exposed as of the date of admission (cohort entry), thereby introducing immortal time 

bias (Figure 3.2a). The time period between cohort entry (date of hospitalization) and 

the first prescription or exposure for the treated patients corresponds to immortal 

time, as patients must survive or be event-free (i.e., not censored) to receive their first 

treatment. This immortal person-time should be classified as unexposed until the first 

exposure (prescription), at which point the patients are classified as exposed. Similarly, a 

cohort study where only patients with a minimum of 3 days of treatment were included 

in the analysis but cohort entry was defined as the first day of treatment also introduces 

immortal time bias.40

In other cohort studies of patients hospitalized with COVID-19, cohort entry was defined 

as the date of the first treatment during the hospitalization for treated patients and 

as the date of hospitalization for those not treated, also introducing immortal time 

bias (Figure 3.2b).41 In this situation, the immortal time period is excluded rather than 

misclassified.

Why is it a problem? 
Immortal time bias is particularly problematic in cohort studies of drug effects because 

it tends to systematically bias the results downward in favor of the treatment under 

study. As such, a treatment may appear protective when it is ineffective, or neutral when 

it is actually harmful.33–35  The latter is illustrated in a study evaluating the effectiveness 

of hydroxychloroquine and azithromycin in patients with COVID-19, where both the 

primary analysis with misclassified immortal time and a sensitivity analysis correctly 

classifying exposed and unexposed person-time, thereby preventing immortal time 

bias, were conducted. In the primary analysis with immortal time bias, the hazard ratio 

was 1.35 (95% CI 0.76-2.40) while in the correct sensitivity analysis, the treatment was 
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associated with an increased rate of death (HR 1.83; 95% CI 1.02, 3.28).39 The magnitude 

of the bias and its impact on the results depends on the number of patients exposed 

in the cohort, the amount of immortal time misclassified or excluded, the duration of 

follow-up, and the number of events.33–35 

How to handle it
Immortal time bias, as described above, is introduced by the investigator at the design 

or analysis stage and can thus be easily avoided. A simple first approach at the design 

phase is to define exposure at the date of cohort entry, in a cohort of patients defined 

by a first diagnosis or hospitalization for COVID-19. Exposure could also be defined 

based on treatment initiation during a specific time period, such as in the first 48 or 72 

hours of hospitalization, with start of follow-up accordingly moved to 48 or 72 hours 

after the date of hospitalization. A second approach is to use a time-varying exposure 

definition at the analytic stage, with each day of follow-up classified as either exposed 

or not exposed to the drug of interest. Finally, a design approach aimed at emulating 

a target trial (see Chapter 2) in this setting can be used, such as the prevalent new-user 

cohort design or the creation of a series of sequential cohorts at predetermined time 

intervals.42–44 

Latency considerations
When evaluating effectiveness of vaccines against COVID-19, latency may be 

considered in the exposure definition. The latency time period takes into account the 

biologically relevant timing of exposure. Thus, for a vaccine fully effective >14 days after 

being injected, patients may be considered unexposed for the first 14 days following 

vaccine receipt and exposed thereafter. This latency period must be applied to all 

exposed patients and not only to those with the event of interest during follow-up. The 

same latency considerations apply when studying the effectiveness of vaccines requiring 

2 doses, where patients move from unexposed time period to partially exposed and 

fully exposed during follow-up. These latency considerations may not apply to all 

outcomes, and may be irrelevant when studying safety,45 for example. 
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of the date of admission
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defined as the date of 
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treated patients and date 
of hospitalization for 
those not treated

Figure 3.2. Illustration of immortal time bias in a hypothetical 
cohort of patients hospitalized with COVID-19
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Panel A. Patients 1 and 2 receive a first prescription of hydroxychloroquine at some 

point during hospitalization, but are considered exposed from the date of hospital 

admission (cohort entry), thereby introducing immortal time bias caused by exposure 

misclassification (red line).

Panel B. Cohort entry for patients 1 and 2 is defined by the first drug prescription and 

by the date of hospital admission for the unexposed, thereby introducing immortal 

time bias caused by excluded unexposed person-time (red dashed line) that should be 

accounted for in the unexposed group. Abbreviation: HCQ = hydroxychloroquine

4.Misclassification
Author: Winterstein AG

Description 

While the concept of confounding is broadly appreciated as a major threat to causal 

inference studies by epidemiologists and even non-epidemiologists, measurement 

or misclassification bias is less recognized. Likewise, while the value of randomization 

to ensure balanced comparison groups is intuitive, clinical trial features that address 

measurement bias may be more subtle. We understand that blinding may enhance 

objective assessments of outcomes by patients or clinicians, but other trial features are 

equally important including: 

• protocol-based outcome ascertainment: This dictates what and how study    

 outcomes are assessed, thus reducing the chance that outcomes are missed or mis-  

 diagnosed. 

• prescribed patient assessments at study entry: This ensures that key    

 characteristics are captured to assess whether comparison groups     

 are balanced with regard to baseline risk for the primary study endpoint and to   

 define the level of generalizability of study results.

• monitoring of patient adherence to treatment assignments: This aims to prevent  

 contaminated exposure groups where patients switch or discontinue treatment, thus  

 diluting the observable treatment effect. 
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What does it look like in practice? 
Clinical trials aim to impose a tightly controlled environment that includes prevention of 

measurement biases. RWE studies that rely on routinely collected data, in contrast, have 

no ability to prescribe what and how baseline conditions, exposures, and outcomes 

are collected. Thus, measurement in RWE studies (i.e., the process of converting the 

available data into key study variables) is as important as the choice of an appropriate 

study design. To illustrate, consider how information in electronic health record (EHR) or 

billing records is generated. Each step, from a patient’s decision to seek health care to 

a health care provider’s decision about how to evaluate the patient and what treatment 

to prescribe to a patient’s decision to use the prescribed treatment and seek follow-up 

care is not protocol based and is not random (see Figure 3.3). 

Figure 3.3. Patients who are available in a real-world data (RWD) database may be systematically different 
from the underlying population of patients we assume they represent. Diagnostic workups may be 
incomplete or flawed and result in incorrect clinical assessments. Patients may fill their prescription, but 
they may never consume the dispensed medication. Patients may have certain comorbidities that are not 
documented during a clinical visit or otherwise missed, leading to potential unmeasured confounders.46

COVID-19 Real-World Evidence Primer 62COVID-19 Real-World Evidence Primer | Chapter Three 62



In addition to this non-differential misclassification (i.e., error in measurement that 

affects both comparison groups to the same extent), researchers need to be aware of 

differential misclassification. For example, the propensity to get evaluated for a particular 

disease, leading eventually to its diagnosis, may be directly related to certain patient 

characteristics or their treatment. In this scenario, exposure groups will have a different 

probability for the detection of the outcome. Thus, for each exposure-outcome pair that 

is evaluated in a RWE study, it is critical to understand the process that generated the 

data (i.e., to understand what factors determine the validity of measurement).

Without understanding the process that generated the data (i.e., without understanding 

the health care system, patient and provider decision-making, and documentation and 

coding practices), we cannot show that:

• Patients who take medications to treat diabetes have more diagnoses of depression   

 than patients who don’t (because patients with chronic medication use see their    

 providers more often and have a higher probability of being evaluated for other diseases)

• Patients who take a newer brand of medication have better outcomes than those   

 who take the older generic drug for the same indication (because socio-economic   

 status is oftentimes not available in a database, affordability of the brand of    

 medication becomes an unmeasured confounder)

• Patients who stop statins die sooner (because preventive medications are typically   

 discontinued in end-of-life situations and patient prognosis may not be available in   

 the database to address this issue of reverse causation)

• Patients who have regular refills of the prescription medication have less    

 hospitalization than those who don’t (because hospitals usually don’t use patients’   

 home supply, hospitalized patients will have fewer refills)

None of these scenarios are causal. They rather reflect measurement biases, a different 

type of bias than confounding, which accordingly cannot be addressed with standard 

methods to adjust for confounding such as propensity scores. 

Why is it a problem?
The above examples touch on scenarios where bias is introduced based on the sheer 

availability of data in the data set. To better understand the impact of such measurement 

biases, we can consider simple epidemiological 2x2 tables that describe differential or 

non-differential misclassification of binary outcomes, exposure, and confounders.47,48 
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20 / 100

11 / 100
= 2.0

18 / 100

9 / 100
= 2.0

28 / 100

19 / 100
= 1.47

Table 3.1.	Outcome	misclassification

The observed risk ratio considering measurement bias is:

Thus, in this scenario (i.e., a cohort study with binary outcome classification), reduced 

sensitivity would not bias the risk ratio (note the same is not true for case-control stud-

ies and a variety of other scenarios of outcome misclassification where sensitivity does 

matter), but a reduced specificity biases the risk ratio towards the null hypothesis (no 

exposure effect). 

Outcome + Outcome – Outcome + Outcome –

Exposure + 20-2=18 80+2=82 Exposure + 20+8=28 80-8=72

Exposure - 10-1=9 90+1=91 Exposure - 10+9=19 90-9=81

Outcome misclassification
Outcome misclassification occurs if outcomes are missed (which signifies a sensitivity 

problem of the measure and is illustrated by the right-pointing arrows in Table 3.1) or 

outcomes are erroneously diagnosed (which signifies a specificity issue and is illustrated 

by left-pointing arrows).49 The examples in Table 3.1 show true values and the effect 

of non-differential misclassification of the outcome (i.e., similar measurement error in 

both exposure groups). The left scenario assumes 90% sensitivity (i.e., 10% of the true 

outcomes are missed) and the right scenario assumes 90% specificity (i.e., 10% of the 

patients without an outcome are misdiagnosed as having the outcome). The true risk 

ratio (i.e., assuming we are evaluating the results of cohort study and follow-up time is 

fixed) is calculated as:
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Similar simple calculations can be conducted for scenarios with differential outcome 

misclassification, i.e., where sensitivity and / or specificity or both vary between 

exposure groups. It can be appreciated from the 2x2 tables that this will almost always 

result in bias. 

Common issues with outcomes measured from routinely collected health care data 

arise when the diagnosis requires screening, such as with the manifestation of diabetes 

or testing for COVID-19, especially in populations that may remain asymptomatic. 

Screening procedures could be erroneously coded with the diagnosis, creating false 

positive cases and thus a specificity issue. Screening could also be omitted or delayed, 

creating false negative cases and a sensitivity problem. The latter is a typical scenario 

that can create differential misclassification inherent in systematic differences in clinical 

evaluations: for example, patients who use a drug that is known to cause diabetes 

(e.g., antipsychotics) will be more frequently evaluated for diabetes than a potential 

comparison group of non-users of antipsychotics.50 Likewise, in the pandemic we 

have observed enhanced screening efforts in high-risk groups such as health care 

workers, which will have likely biased population-based infection estimates. If the data 

for the exposure and comparison groups originates from different data sources, the 

risk for differential misclassification is often amplified and requires particularly careful 

assessment. To extend the COVID-19 example above, an investigation of the effect of 

vaccines on COVID-19 infections in real-world data would have likely shown a reduction 

of infections among vaccinated individuals early after vaccinations were accessible, even 

if the vaccine were in fact entirely ineffective. This is because the propensity to test for 

COVID-19 might have been reduced in anticipation of a protective effect of the vaccine. 

Of course, we have now learned that breakthrough infections may still occur, and 

accordingly, testing may have increased again.

As a general rule, outcomes that result inevitably in health care utilization because 

of their severity, such as hospitalizations, are typically less prone to misclassification 

errors than outcomes that require patient and clinician decisions for evaluation, but 

the ability of the database to capture and correctly classify any outcome should still be 

evaluated. For example, even though the diagnosis of myocardial infection is unlikely 

to depend on patients’ decisions to seek health care or clinicians’ decisions to order 

the appropriate tests, evaluation of myocardial infarction based on hospital admission 

records will be incomplete if death records are not accessible.
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18 / 90

12 / 110
= 1.8

21 / 110

9 / 90
= 1.91

Outcome + Outcome – Outcome + Outcome –

Exposure + 20-2=18 80-8=72 Exposure + 20+1=21 80+9=89

Exposure - 10+2=12 90+1=91 Exposure - 10-1=9 90-9=81

Exposure misclassification
Issues with exposure misclassification can be quantified using the same 2x2 tables. In 

Table 3.2, the left table illustrates again the effect of non-differential misclassification 

of exposure based on 90% sensitivity and the right table illustrates the effect of 90% 

specificity. 

Table 3.2. Exposure	misclassification

Note that the denominators, i.e., the total number of exposed and unexposed (initially 

100 in each group), change as result of misclassification as well. Both scenarios bias the 

risk ratio and again, the contingency tables facilitate assessments of the impact of any 

other scenarios, e.g., where sensitivity and specificity problems occur simultaneously 

or where misclassification is differential, i.e., varies between those patients with and 

without outcome. 

Specificity problems are prominent with exposure measurement in routinely collected 

health care data because of patient non-adherence issues and missing end dates in 

utilization (e.g., a prescription may have been written but not filled, or filled but not 

taken, or prematurely discontinued). Specific to COVID-19, the capture of vaccination 

data is a concern for exposure measurement as capture is fragmented and longitudinal 

data for the full dose series may not be available in a single database. This is especially 

difficult and more unusual than typical health care data because the setting varies from 

receiving a vaccine at the pharmacy to receiving the vaccine at a mass vaccination 

site such as a football stadium where reporting of the data may not be consistent or 

complete. Other challenging constellations include scenarios where the outcome 
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follows soon after drug discontinuation or switching from one study drug to the 

other, where outcomes may have induction or latency periods or where drug effects 

continue after discontinuation.51 Understanding of the underlying pharmacology to 

guide assignment of exposure times, defined as the time period during which a drug 

effect could be expected, is critical to avoid misclassification and biased exposure 

effect estimates. A particular challenge is protopathic bias where drug exposure is 

discontinued because of early signs of outcome manifestation, which, if not considered 

in the design and measurement, will inevitably result in an underestimate of the drug 

effect.32

The effects of the pandemic on drug utilization are yet to be described, but one 

might expect greater gaps with drug refills due to reduced accessibility to health care 

providers in the outpatient setting. Problems in assignment of outcomes to distinct 

exposures might also occur in analysis of patients in acute or intensive care settings 

where different treatment approaches were tested empirically, leading to frequently 

changing regimen.

Confounder misclassification
While confounding and measurement bias are two separate mechanisms and require 

different approaches for mitigation, bias can occur in the measurement of confounders 

as well, potentially exaggerating the confounding bias. To calculate the impact of 

confounder misclassification, contingency tables can be used again, this time by 

stratifying by the confounder. Intuitively, it makes sense that a poorly measured 

confounder will result in poor adjustment for that confounder, but adjustment may 

not only be incomplete but may produce even more bias. Consider for example a 

scenario where a confounder is measured more completely (i.e., with better sensitivity) 

in the exposed than in the comparison group. This would create a false assessment 

of the presence of this confounder in the 2 comparison groups and thus, adjustment 

for this confounder would not balance the comparison groups but potentially amplify 

the imbalance. Related scenarios that can be encountered in RWD include more 

comprehensive assessments in the exposed than the comparison group (e.g., because 

certain tests are required before a drug is initiated). Another common clinical scenario 

is the documentation and coding of a disease during an office visit that presents the 

indication for a newly prescribed medication (e.g., obesity is coded if anti-obesity 

treatment is initiated, but omitted otherwise). 
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How to handle it
From the above it is clear that measurement bias can be introduced by any variable 

that factors into the final analysis of the (causal) effect of the exposure on the outcome. 

The impact of measurement bias can be severe and cannot be addressed with common 

approaches that are used to address confounding. In fact, in the case of misclassified 

confounders, adjustment for confounding may actually exaggerate bias. Such as with 

confounding, in order to anticipate measurement bias, it is critical to understand the 

process that generated the data and what factors have influenced whether a certain 

variable is present or not present in the data set or measured correctly or incorrectly. This 

includes an understanding of factors that influence patient decision-making, diagnostic 

processes and related coding practices, and reimbursement policies, to name a few.

No database will be optimal for the measurement of all necessary study variables with 

perfect validity, but careful review of each potential data source is the first step to avoid 

misclassification bias. It should be clear and accepted that every RWD researcher will 

encounter research questions that cannot be answered with the available RWD sources, 

and moving ahead and conducting such studies regardless is irresponsible. In those 

cases where we feel that measurement bias might be an issue but is addressable and 

does not preclude our ability to make valid causal inferences, there are several steps 

that can help in mitigating such bias. 

Measure validation
Well-conducted pharmacoepidemiologic studies will aim to use measures that have 

been validated against a gold standard. This is commonly seen with claims-based 

outcomes measures that have been validated against medical charts, but to a much 

lesser extent with measures of exposure and confounders. The importance of metrics to 

operationalize validity (e.g., specificity or sensitivity) might vary based on the particular 

scenario that is addressed with the measure.52 It should also be noted that the suitability 

of a medical chart to serve as gold standard may vary across scenarios and thus, EHRs 

may need further evaluation against prospective protocol-based assessments, especially 

to ensure data completeness. Furthermore, validation studies should be generalizable 

to the data source, patient population, and other relevant factors that may affect the 

degree of measurement error that we would expect in the study at hand. 
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Simple bias / sensitivity analysis
The contingency tables above illustrate how the effect of misclassification errors on 

exposure effect estimates can be quantified. The same can be done post-hoc, after 

analyses have been completed to quantify the impact of potential measurement 

bias.53,54 Estimates of measurement error that can be tested may originate from 

validation studies (e.g., using published estimates of sensitivity or specificity) or be 

based on other assumptions such as expert opinion. Common examples for sensitivity 

analyses where the robustness of results across a range of values is tested include 

scenarios where the duration of assumed drug exposure is varied, or where look-back 

periods are increased to enhance the sensitivity of confounder measurement.

Probabilistic bias analysis
An extension of the contingency table approach is the use of probabilistic bias analyses, 

which can assess the impact of multiple measurement errors involving several study 

variables simultaneously. Using validation studies or other assumptions about the size 

of measurement errors, several study variables can be updated at the level of individual 

study participants and outcomes analyses redone with these new updated data sets. 

Multiple imputation
As illustrated, measurement bias can occur because of incorrect or incomplete 

measurement (the topic of missing data is discussed further in the next section). 

The latter is often addressed with multiple imputation approaches that model the 

probability to have a potential variable (e.g., disease) or variable value of interest. As 

briefly touched upon earlier in this section, study variables in RWD are often not missing 

completely at random (MCAR) and thus, complete case analyses where patients with 

incomplete measures are excluded commonly introduce bias.55,56 Especially if there is 

reason to believe that absence of a variable does not reflect absence of disease (e.g., 

because of delayed diagnosis), multiple imputation might be an important means 

of completing missing data elements. Other approaches to addressing missing or 

incomplete variables, such as propensity score calibration and regression calibration, 

are based in similar approaches where richer information for a subset of patients is used 

to enhance the entire data set.57

In summary, even though a range of approaches to address measurement bias 

exist, they are not as widely integrated in RWE studies as approaches to adjust 
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for confounding. This notwithstanding, measurement bias can be equally severe 

and greatly affect the ability to make causal inferences.58 Therefore, good 

pharmacoepidemiologic study practices require that potential sources of measurement 

bias are carefully examined, validation studies of key study variables are presented, and 

the direction of potential bias is addressed and ideally quantified.59 A well-conducted 

and presented RWE study will allow the assessment of whether the RWD source 

was appropriate (fit-for-purpose) for the research question at hand, and whether the 

processes that generated the data were appropriately considered in the study design 

and analysis.60,61 

5.Missing Data
Author: Lin KJ

Description
The most commonly used RWD sources, insurance claims data and EHRs, could have 

missing data when used for COVID-19 pharmacoepidemiology research. For patients 

with mild COVID-19 disease, supportive care has been the preferred management 

strategy;62 pharmacological treatments with possible antiviral effects have been 

primarily used for patients with moderate to severe disease requiring hospitalization.63,64 

Insurance claims data generally do not capture detailed information on inpatient 

medication use, vaccines or treatments not reimbursed by the insurance provider 

or investigational drugs, or certain clinical data elements, limiting their utility for 

addressing some questions.65 In studies relying on claims, missing information generally 

translates into misclassification of study variables, which can lead to bias. In contrast, 

EHR data often enable ascertainment of certain clinical covariates that are not usually 

measured in claims data, such as vital signs, laboratory test results, smoking status, 

body mass index (BMI), and code status. However, these factors can have a substantial 

amount of missing data in routine-care EHR, which can also lead to bias.66 In addition, 

EHR-discontinuity, defined as receiving care outside of the reach of a given EHR, can 

result in incomplete capture of medical information in the study EHR, which is another 

form of data incompleteness that can lead to misclassification of key study variables.67 

It is critical to examine and address missing data in study outcomes, exposures, and 

covariates.
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What does it look like in practice? 
For routinely evaluated health metrics or biomarkers, such as laboratory results, vital 

signs, or body mass index, missing data are presented as having no values recorded 

in the timeframe of interest (e.g., one year prior to a drug dispensing). If longitudinal 

recording of multiple values of the same biomarkers is used to monitor disease course, 

such as a change in glycosylated hemoglobin (HbA1c) or inflammatory markers, having 

a recording of the biomarker at some time points (e.g., at cohort entry) but not others 

(e.g., at certain visits or time interval during follow-up) also creates a scenario of missing 

data (e.g., change of the value since baseline). This is in contrast to what is typical in 

randomized trials in which measurements are made on a specific schedule according to 

a study protocol. For health outcomes, such as those defined using diagnostic codes, 

missing data often result in misclassification of study variables (i.e., false negatives) 

with EHR or claims data. For example, if a patient has COVID-19 but does not have 

a medical encounter during the study period in which a COVID-19-related code is 

recorded, it will appear in the data as though this individual does not have COVID-19. It 

will not be known that the data point is missing, but the patient’s COVID-19 status will 

be misclassified. This creates an issue between a true negative versus an unknown, as 

the absence of the value may be the result of the patient not having the condition, the 

value not collected, or the patient being seen outside the system.

Why is it a problem? 
The mechanism or reasons causing missing data will determine its propensity for biasing 

effect estimates.68 “Missing completely at random” (MCAR) means the probability 

of missingness is independent of exposure and/or outcome (e.g., missing a batch of 

laboratory results due to a fire). Under MCAR, using only people without missing data 

(i.e., complete case analysis) will not lead to bias. “Missing at random” (MAR) means the 

probability of missingness depends only on observed variables (e.g., missing prostate 

specific antigen values in females). Under MAR, complete case analysis will be biased, 

so proper implementation of statistical methods is needed to yield unbiased results. 

“Missing not at random” (MNAR) means the probability of missingness depends on not 

only observed but unobserved information (e.g., people with better renal function tend 

to miss serum creatinine values that measure renal function). Under MCAR, bias caused 

by missing data is expected, and an effort to quantify the impact on the study validity 

should be made. 
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How to handle it 
Assessment of missing mechanism: The first step is to examine the frequency and 

patterns of missingness in the database.69 Then the missing mechanism should be 

determined based on domain knowledge or empirical data whenever available.70 Under 

the assumption of MCAR, complete case analysis is unbiased, but statistical power 

may be reduced. We will now briefly survey strategies to reduce potential bias due to 

missing data under MAR and MNAR. 

Three commonly used statistical methods to handle missing data under MAR—multiple 

imputation, maximum likelihood methods, and inverse probability weighting:68,71  

Multiple imputation (MI) relies on a correctly specified imputation model that uses 

observable information to replace the missing value with a predicted value and 

repeats such imputation process multiple times to account for the uncertainty of the 

imputation process. While there is no magic cut-off of missing proportion for reliable 

imputation, generally imputing data when missing data >40% should be avoided.72,73 

The implementation of MI can be computationally intensive for large data sets. 

Maximum likelihood methods use an iterative algorithm that fits different sets of 

parameter values for an assumed probability distribution until it identifies what 

maximizes the log-likelihood value (i.e., what fits the observed data the best). It 

leverages all the observed information and often yields estimates with optimal 

efficiency. However, sometimes incomplete likelihood functions have a complicated 

form or require special computational techniques (e.g., expectation-maximization 

algorithm).74 Therefore, the implementation of maximum-likelihood-based methods 

may be problem-specific and require special software. 

Inverse probability weighting methods weight patients without missing data by the 

reciprocal of the probability of having complete records to adjust for factors underlying 

missingness.75 Weighting does not use those with missing data in the final outcome 

model but rather emphasizes (with larger weights) those patients with complete 

data but with similar characteristics as the patients with missing data. Weighting is 

sometimes affected by extreme weights, both of which may compromise statistical 

efficiency.
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Strategies to reduce bias due to missing data under MNAR: Sometimes researchers 

may be able to obtain additional information through linkage with other data sources.71 

For example, in a study of patients with atrial fibrillation (AF), the investigators originally 

had access only to international normalized ratio (INR, a blood test that quantifies 

anticoagulation effect) values for tests performed in hospitals, and it is possible that 

INR values done in the hospitals are higher than in ambulatory settings due to higher 

medical complexity of hospitalized patients. Under the assumption of MNAR, the 

investigators linked the data set with anticoagulation management clinic data, where 

the INR results were available even if the tests were performed outside of hospitals.76 

Another strategy to reduce missing data is to supplement the structured data with 

variables derived from natural language processing (NLP) of the free-text notes to 

improve missingness. For example, in the same cohort of AF patients, using NLP 

to extract additional information from the free-text notes reduced missing smoking 

information from 54.4% to 7.8%.76 For data with residual missing data under MNAR, the 

investigator should conduct a sensitivity analysis varying plausible values of the missing 

data to test the robustness of the study findings.77 

Methods to handle missing data due to EHR-discontinuity: Except for some 

systems where the EHR system is explicitly integrated with the payor system (claims), 

many EHR systems do not have well-defined enrollment dates and are subject to data 

leakage outside of the study EHR (i.e., EHR-discontinuity).78 The causes and patterns of 

EHR-discontinuity may vary by type of EHR system (e.g., general hospital vs. specialty 

EHR or a metropolitan vs. suburban systems). For example, EHR data from a general 

hospital might lack information from encounters at unaffiliated specialty facilities. The 

information bias due to EHR discontinuity can be reduced by an externally validated 

algorithm to identify a sub-cohort with high data completeness.67,79,80 In select empirical 

examples, it has been found that patients with high EHR-continuity had a similar 

comorbidity profile compared to those with low EHR-continuity, so restricting analyses 

to those with high EHR continuity seemed to confer a desirable trade-off between 

validity (reducing misclassification of the study variables) and generalizability (drawing 

inference in the sub-population).80 However, these findings may not generalize to all 

settings and should be carefully considered on a case-by-case basis.
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Empirical example: In an observational study aiming to determine the effect of 

hydroxychloroquine with or without azithromycin on COVID-19 mortality using EHR data 

from the United States Department of Veterans Affairs,81 there was a notable amount 

of missing data in lifestyle factors (e.g., ranging from 2% in alcohol consumption to 

38% in smoking status), vitals (e.g., ranging from 3% in blood pressure to 6% in oxygen 

saturation), and labs (e.g., ranging from 7% in serum sodium, 19% in HbA1c, to 86% 

D-dimer). Missingness at random was assumed, and multiple imputation was used for 

most variables before incorporating these variables in a propensity score model for 

confounding adjustment. Exposure misclassification was unlike to be a major concern 

as the study focused on the short-term use of inpatient medications that were well-

captured in the study EHR. For outcome ascertainment, to capture out-of-network 

deaths, the investigators linked the EHR data with the Beneficiary Identification Records 

Locator Subsystem and Social Security Death Index data.82 
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This chapter provides select examples of COVID-19 studies that used real-world data 

(RWD) to generate real-world evidence (RWE) that addresses public health questions 

during the pandemic. The studies presented include:

• target trial emulation

• cohort study

• case-control study

• self-control case series

• drug utilization study

• diagnostic test evaluation study

Chapter 4: Examples 
of COVID-19 Real-

World Evidence Studies
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Each study summary includes the study name; citation details; study objective; 

population, intervention, comparison, and outcomes (PICO); data source(s), and study 

period. For each study, we highlight how authors handled key potential sources of error. 

Target Trial Emulation 
Study citation: Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, Hernán 

MA, Lipsitch M, Reis B, Balicer RD. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide 

Mass Vaccination Setting. N Engl J Med. 2021 Apr 15;384(15):1412-1423. doi: 10.1056/

NEJMoa2101765. Epub 2021 Feb 24. PMID: 33626250; PMCID: PMC7944975.1

Study objective: The objective of this study was to rapidly characterize and evaluate 

the effectiveness of the BNT162b2 mRNA vaccine in a real-world setting based on 

emulation of the target trial of the causal effect. As noted by the authors, COVID-19 

vaccination is expanding globally, and understanding vaccine performance in a real-

world setting is of paramount importance to patients, public health officials, researchers, 

and other stakeholders. 

 

PICO: The study population was derived from Clalit Health Services (CHS) which 

includes 53% of the insured population in Israel. The outcomes of interest were 

occurrence of documented SARS-CoV-2 infections, symptomatic COVID-19, related 

hospitalizations, severe COVID-19, and death from COVID-19 among both vaccinated 

and unvaccinated populations. The intervention was receipt of the BNT162b2 mRNA 

vaccine, based on availability and individual agreement to receive a vaccination. 

Patients were matched 1:1 based on clinical and non-clinical characteristics.

 

Data source: CHS is a large health care organization in Israel, covering approximately 

four million citizens—just over half of Israel’s total population.

Study period: December 20, 2020, to February 1, 2021

Key sources of error and how they were handled: This study, using the target trial 

paradigm, is one of the largest population-based studies available and allows for 

insight into the real-world effectiveness of the BNT162b2 mRNA vaccine. COVID-19 

diagnoses were confirmed with gold-standard polymerase chain reaction (PCR) testing, 

which is an important element of case definition for other large real-world studies as 
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there can be significant clinical overlap between COVID-19 and other viral respiratory 

illnesses resulting in potential outcome misclassification. To mitigate the potential 

for confounding, the authors were able to balance a wide range of factors, including 

described risk factors for severe COVID-19 disease, by matching patient cohorts 

on demographic and clinical characteristics. A number of sensitivity analyses were 

performed, accounting for potential biases. Date of symptom onset was unavailable 

for this study and presents a minor limitation. There was limited race and ethnicity data 

appropriate to the region of the study population and the ability to assess treatment 

effect heterogeneity across other populations is limited. Additionally, several patient 

populations (those without documented addresses, health care workers, etc.) were 

excluded from the study for concern of skewing results in the case these individuals 

were exposed to a greater degree than the general population. Overall, 34% of the 

otherwise-eligible vaccinated population was excluded due to the rigorous matching 

performed. This is important to consider when extrapolating these data to other 

population groups.

Cohort Study 
Study citation: Rentsch CT, DeVito NJ, MacKenna B, Morton CE, Bhaskaran K, Brown 

JP, Schultze A, Hulme WJ, Croker R, Walker AJ, Williamson EJ, Bates C, Bacon S, 

Mehrkar A, Curtis HJ, Evans D, Wing K, Inglesby P, Mathur R, Drysdale H, Wong AYS, 

McDonald HI, Cockburn J, Forbes H, Parry J, Hester F, Harper S, Smeeth L, Douglas 

IJ, Dixon WG, Evans SJW, Tomlinson L, Goldacre B. Effect of pre-exposure use of 

hydroxychloroquine on COVID-19 mortality: a population-based cohort study in patients 

with rheumatoid arthritis or systemic lupus erythematosus using the OpenSAFELY 

platform. Lancet Rheumatol. 2021 Jan;3(1):e19-e27. doi: 10.1016/S2665-9913(20)30378-7. 

Epub 2020 Nov 5. PMID: 33349815; PMCID: PMC7745258.2

Study objective: This study sought to understand the potential effectiveness of 

hydroxychloroquine in preventing COVID-19 mortality in the general population. 

Early in the pandemic, there was interest in repurposing pharmaceuticals for the 

prevention of SARS-CoV-2 infections. Hydroxychloroquine was quickly thrown into a 

global spotlight after it garnered simultaneous praise and criticism from a number 

of high-profile sources. At the time of this study, most randomized clinical trials and 

observational studies showed no evidence of a benefit of hydroxychloroquine as a 

treatment for patients admitted to hospital who already have COVID-19. However, there 
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remained uncertainty whether routine ongoing use of hydroxychloroquine in people 

without SARS-CoV-2 infection protected against new infections or severe COVID-19 

outcomes. 

 

PICO: This was an observational, population-based cohort study analyzing electronic 

health records for individuals over the age of 18 years who were established with 

a primary care provider in England, United Kingdom (UK). Patients who carried a 

diagnosis for which hydroxychloroquine was indicated (systemic lupus erythematosus 

or rheumatoid arthritis) and were on hydroxychloroquine therapy for at least 6 months 

were selected to be compared with those with systemic lupus erythematosus or 

rheumatoid arthritis but not treated with this medication. Death due to COVID-19 

was studied as the primary endpoint, with non-COVID-19 mortality used as a negative 

control outcome. 

Data source: The OpenSAFELY platform, a new, secure, transparent, open-source 

software platform for analysis of electronic health record data and linked SARS-CoV-2 

testing, hospitalization, and death records for approximately 40% of the population in 

England. 

Study period: March 1 and July 13, 2020

Key sources of error and how they were handled: Because the OpenSAFELY 

platform collects longitudinal data from routine clinical practice, it enabled 

an examination of previously approved indications and real-world use of 

hydroxychloroquine in COVID-19 with adjustment for confounding by indication. 

The authors developed a directed acyclic graph to inform the selection of potential 

confounders to include in multivariable regression. The data source had substantial 

inclusion of patient medication data but was limited by a lack of information on 

medications prescribed by specialists, such as biologic treatments for rheumatological 

disease. Therefore, the authors calculated bias-adjusted effect estimates using 

quantitative bias analysis to assess how adjustment for biologic treatments (as a proxy 

for disease severity) might have produced different results. Sensitivity analyses were 

conducted to assess the potential of exposure misclassification, including shortening 

the exposure ascertainment window from 6 to 3 months prior to baseline to be 

more sure patients were prescribed hydroxychloroquine closer to baseline. Multiple 

imputation was used to address missing ethnicity data for 23% of individuals. The 
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authors pre-specified and published an open-source protocol prior to analyzing the 

data, which reduced the potential for subjectivity in decision-making during analysis. All 

code for data management and analyses was archived with version control on GitHub 

for review and re-use to promote reproducibility of research findings.

  

Case-Control Study 
Study citation: Thompson MG, Stenehjem E, Grannis S, Ball SW, Naleway AL, Ong 

TC, DeSilva MB, Natarajan K, Bozio CH, Lewis N, Dascomb K, Dixon BE, Birch RJ, Irving 

SA, Rao S, Kharbanda E, Han J, Reynolds S, Goddard K, Grisel N, Fadel WF, Levy ME, 

Ferdinands J, Fireman B, Arndorfer J, Valvi NR, Rowley EA, Patel P, Zerbo O, Griggs EP, 

Porter RM, Demarco M, Blanton L, Steffens A, Zhuang Y, Olson N, Barron M, Shifflett P, 

Schrag SJ, Verani JR, Fry A, Gaglani M, Azziz-Baumgartner E, Klein NP. Effectiveness of 

Covid-19 Vaccines in Ambulatory and Inpatient Care Settings. N Engl J Med. 2021 Oct 

7;385(15):1355-1371. doi: 10.1056/NEJMoa2110362. Epub 2021 Sep 8. PMID: 34496194; 

PMCID: PMC8451184.3

Study objective: Understanding the effectiveness of COVID-19 vaccines, particularly in 

populations disproportionately affected by the disease, is of paramount importance to 

improving health outcomes. Three vaccines were initially authorized for emergency use 

in the United States (US) by the Food and Drug Administration (FDA): BNT162b2 (Pfizer–

BioNTech), mRNA-1273 (Moderna), and Ad26.COV2.S (Johnson & Johnson/Janssen). 

The objective of this study was to evaluate the real-world effectiveness of the 3 vaccines.

PICO: This is a case-control study of adult visits in an ambulatory clinic and emergency 

department setting who were tested for COVID-19 within a multicenter health 

care system network. This study took place across 187 hospitals across the US, with 

study dates before and after the widespread availability of COVID-19 vaccines. A 

test negative design was used to study comparative effectiveness for test positivity 

between unvaccinated and vaccinated individuals. In this study, the ability of each of 

the 3 vaccines to prevent hospitalization, admission to an intensive care unit, or an 

ambulatory care visit (emergency room and urgent care) was characterized. 

Data source: Electronic health record data from the VISION network, a consortium 

of 7 academic and private medical centers, were used for this study, with linkage 

to statewide and local immunization registries, claims, laboratory results, and other 

diagnostic data where available.

COVID-19 Real-World Evidence Primer 84COVID-19 Real-World Evidence Primer | Chapter Four 84



Study period: January 1 through June 22, 2021

Key sources of error and how they were handled: Data derived from several 

disparate sources (i.e., electronic health records, city and state immunization registries, 

and claims data) were used for vaccination verification, which reduced potential 

exposure misclassification. This study had a particularly robust analysis of results as 

they pertain to racial and ethnic demographics, which is important for COVID-19 (and 

other diseases), as there are differences in clinical course and outcomes among minority 

communities. 

Self-Controlled Case Series Study
Study citation: Katsoularis I, Fonseca-Rodríguez O, Farrington P, Lindmark K, Fors 

Connolly AM. Risk of acute myocardial infarction and ischaemic stroke following 

COVID-19 in Sweden: a self-controlled case series and matched cohort study. Lancet. 

2021 Aug 14;398(10300):599-607. doi: 10.1016/S0140-6736(21)00896-5. Epub 2021 Jul 29. 

PMID: 34332652; PMCID: PMC8321431.4

Study objective: As the science and understanding of COVID-19 has evolved, its 

effect on specific organ systems (e.g., vascular) requires study. This study sought to 

characterize the risk of both myocardial infarction and ischemic stroke for those infected 

with SARS-CoV-2.

PICO: This study used two methods for its analysis: a self-controlled case series (SCCS) 

and a matched cohort study of patients in Sweden who received a prior diagnosis of 

COVID-19, and later received diagnosis codes related to a myocardial infarction or 

ischemic stroke. At most time points of the study, prior laboratory confirmed SARS-

CoV-2 infection was identified as a risk factor for these 2 vascular events. 

Data source: Patient data were derived from SmiNet at the Swedish Public Health 

Agency (including all patients registered as having COVID-19 until September 14, 2020) 

and linked with registries administered by the Swedish National Board of Health and 

Welfare. Like many other public health databases, SmiNet has been used to help track 

COVID-19 in Sweden since February 2020, as COVID-19 has been a notifiable disease 

in Sweden, and diagnosed individuals are reported to SmiNet (Swedish Public Health 

Agency) daily. The source has suitable coverage for the population of interest. 
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Study period: February 1 to September 14, 2020

Key sources of error and how they were handled: All individuals in Sweden were 

eligible for inclusion, which is a particular strength of this nationally representative 

study, given the comprehensive population level data capture in this RWD source, 

and making it the largest study evaluating this association at the time of publication. 

Another strength was the use of 2 different designs (SCCS and conventional matched 

cohort), which rely on different sets of assumptions and address different types 

of biases. The use of the 2 designs contributed to the ability to control for bias 

using different assumptions about pathways for biases. This study also adjusted for 

income, education level, and country of origin, which are important demographic 

and socioeconomic factors to consider in real-world evidence studies of COVID-19 

sequelae. Generalizability from a single country study may be limited, and RWD studies 

of COVID-19 outcomes will also benefit from understanding race and ethnicity when 

available. Additionally, the authors noted that there was a peak of vascular events on 

day 0 (date of vaccination). A sensitivity analysis that excluded patients with events on 

day 0 found similar results to the main analysis. This speaks to the robustness of the 

study results.

Drug Utilization Study
Study citation: Prats-Uribe A, Sena AG, Lai LYH, Ahmed WU, Alghoul H, Alser O, 

Alshammari TM, Areia C, Carter W, Casajust P, Dawoud D, Golozar A, Jonnagaddala J, 

Mehta PP, Gong M, Morales DR, Nyberg F, Posada JD, Recalde M, Roel E, Shah K, Shah 

NH, Schilling LM, Subbian V, Vizcaya D, Zhang L, Zhang Y, Zhu H, Liu L, Cho J, Lynch KE, 

Matheny ME, You SC, Rijnbeek PR, Hripcsak G, Lane JC, Burn E, Reich C, Suchard MA, 

Duarte-Salles T, Kostka K, Ryan PB, Prieto-Alhambra D. Use of repurposed and adjuvant 

drugs in hospital patients with covid-19: multinational network cohort study. BMJ. 2021 

May 11;373:n1038.5

Study objective: Early in the COVID-19 pandemic, there was great interest in 

understanding how repurposing of already available therapeutics might be useful, 

particularly prior to the authorization of antiviral treatments. The primary objective of 

this study was to understand the most common drugs being used as adjuvant treatment 

across multiple countries.
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PICO: This multinational network cohort study focused on drug utilization, and included 

electronic health record and administrative claims data from 4 countries (US, South 

Korea, Spain, and China). Patients were identified by either a diagnosis of COVID-19 or 

a positive PCR test. Drugs that these patients received were studied as either adjuvant 

therapies for mitigation of sequelae or repurposed drugs meant to directly serve the 

purpose of COVID-19 treatment.

Data source: This large study used a mixture of claims and electronic health record 

data from 4 countries. The data were mapped to the Observational Medical Outcomes 

Partnership (OMOP) Common Data Model (CDM). 

Study period: January 2020 to December 2020

Key sources of error and how they were handled: Understanding usage patterns of 

therapeutics throughout the time course early in the COVID-19 pandemic has important 

public health implications and can guide investigators toward opportunities for further 

real-world evidence generation related to the outcomes of these medications. This 

study found several interesting trends, including usage of drugs that varied widely by 

country as well as time. Presumably, this was due to the rapidly evolving evidence within 

the COVID-19 pandemic as well as local drug availability. Specifically, earlier in the study 

period, hydroxychloroquine was found to have been prescribed broadly, despite lack 

of evidence of its clinical effectiveness. Prescription of hydroxychloroquine tapered off 

in later months after observational studies and clinical trials found no clinical benefit in 

addition to a questionable safety profile.6 Conversely, dexamethasone and remdesivir 

experienced increases in widespread use in later months of 2020. This is another 

important aspect of drug utilization studies—their ability to demonstrate the impact of 

implementation and de-implementation of clinical guidance and detection of changes 

in therapeutic recommendations.

As with all studies relying on diagnosis codes to identify COVID-19, there may have 

been misclassification of disease, particularly for those with minor illness, who may 

therefore have been underrepresented. 

Diagnostic Test Utilization Study
Study citation: Mack CD, Osterholm M, Wasserman EB, Petruski-Ivleva N, Anderson 
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DJ, Myers E, Singh N, Walton P, Solomon G, Hostler C, Mancell J, Sills A. Optimizing 

SARS-CoV-2 Surveillance in the United States: Insights From the National Football 

League Occupational Health Program. Ann Intern Med. 2021 Aug;174(8):1081-1089. doi: 

10.7326/M21-0319. Epub 2021 Jun 15. PMID: 34125571; PMCID: PMC8252091.7

Study objective: Evidence to understand effective strategies for surveillance and early 

detection of SARS-CoV-2 was limited throughout the first year of the pandemic. Limited 

data have been available describing frequent testing for SARS-CoV-2 in a closed 

population. The purpose of this study was to describe a large COVID-19 testing and 

surveillance program.

PICO: The National Football League (NFL)/NFL Players Association (NFLPA) COVID-19 

Testing and Surveillance Program instituted routine testing in a closed population of 

NFL players and team staff, most of whom were tested daily. Several diagnostic tests, 

including point-of-care (POC) antigen testing and reverse transcription polymerase 

chain reaction (RT-PCR), were used. Test results were compared against final clinically 

adjudicated case status, as well as across diagnostic machines (e.g., Roche Cobas 

compared to Hologic Panther and antigen POC compared to RT-PCR). Outcomes were 

the agreement of test results and descriptive statistics of test results, including Cycle 

threshold (Ct) values.

Data source: This large observational study included 11,668 NFL players and staff

who underwent testing as part of the program between August 1, 2020 and November 

14, 2020. Individual characteristics, symptom data, longitudinal testing data, and case 

adjudication associated with 632,370 tests were included. 

Study period: NFL Season, August through November 2020

Key sources of error and how they were handled: This study drew from a real-

world program performing daily RT-PCR tests in a large, closed population with almost 

complete clinical follow-up for all individuals testing positive, serial testing after an 

initial positive result, and case adjudication. This, combined with frequent testing 

and same-day testing on multiple platforms for those with positive tests, provided 

transparency into the utility of newly authorized diagnostics, notably showcasing the 

ability of RT-PCR testing to detect early and asymptomatic or presymptomatic infection. 

Ct values are not often used in real-world application, and high values are often 
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disregarded as not true infection; this study showed that quantitative values proved 

useful for understanding test results and that high Ct values can signal early infection. 

Importantly, because antigen POC tests were often administered on the same day 

as RT-PCR tests and positive results were clinically adjudicated with serial testing, the 

frequency of false results for POC testing could be evaluated. This study is limited in 

its generalizability; notably it was performed within a healthy working population and 

is not diverse in gender (largely male). Race and ethnicity data were not collected. 

Additionally, application to non-daily testing environments should be considered; these 

real-world results within a surveillance system administering daily testing in an ideal 

setting may not be applicable to for-cause testing but are useful for understanding the 

utility of the diagnostic tools.
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Introduction

The COVID-19 pandemic laid bare the limited interoperability capacity of the existing 

health care data infrastructure for assembling data to quickly address critical questions 

about a novel disease. Several initiatives have emerged to address this shortfall using 

real-world data (RWD) for COVID-19 observational research. This chapter features a 

selection of multi-stakeholder COVID-19 RWD initiatives that have contributed to our 

understanding of the COVID-19 pandemic and/or are structured to continue to provide 

opportunities for observational research about emerging issues related to the disease. 

The authors spoke to and/or emailed with representatives from each of the initiatives for 

the writing of this chapter.

RWD and real-world evidence (RWE) have never been needed as widely and urgently 

as in the COVID-19 era. Some initial analyses from RWD were needed for decision-

making in real time, despite the known limits of the underlying data. Other questions 

continue to be explored and refined, and new questions emerge over time. COVID-19 

is an ongoing pandemic and its effects will stay with us longer than we had hoped. The 

methods and resources that have emerged to address COVID-19 will ideally endure and 

evolve into the future. In turn, the way we think about and perform RWE research using 

RWD will change. 

Perhaps the height of public awareness on the value of RWD sources came in January 

of 2020 with the Johns Hopkins COVID-19 Dashboard1 (more formally the COVID-19 

Data Repository by the Center for Systems Science and Engineering at Johns Hopkins 

University), which uses publicly available epidemiological data from aggregated 

government, national, and regional data sources.2 Much has been written about the 

dashboard—how it came to be, how it was relied on, and how the COVID-19 data were 

interpreted. Spurred by a global emergency, the Johns Hopkins COVID-19 Dashboard 

supplied a constantly updating source of aggregated data to track COVID-19 cases, 

deaths, vaccinations, and more.3 Those raw numbers were and continue to be widely 

used. The real-time aspect of the dashboard and the public availability of the compiled 

data allowed both researchers and the general public to monitor the evolution of the 

pandemic as it occurred, and continues to do so.
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Patient-level COVID-19 RWD sources have been used since early 2020 in different parts 

of the world to further characterize COVID-19 and to evaluate the impact of medical 

and public health interventions on the disease. Many of these data sources have been 

made available or established as part of multi-stakeholder consortia and networks, 

maximizing the use and value of RWD and methods as part of the pandemic response. 

Some of these have been established with long term goals and with enhanced data 

infrastructures, software, and tools. 

Multi-stakeholder COVID-19 RWD initiatives with the potential to expand the depth of 

real-world observational studies have been compiled by the Duke Margolis Center for 

Health Policy 4,5 and in a compilation of tools to support COVID-19 research produced 
by the Food and Drug Administration (FDA).6  Additional COVID-19 RWD multi-

stakeholder initiatives have been added after conducting a targeted review of recent 

COVID-19 data sources and consultation with other researchers. 

Some of the existing RWD initiatives leverage data platforms or distributed data 

networks to conduct COVID-19 research, while others are efforts newly launched during 

the pandemic. The initiatives that existed prior to the pandemic are mostly based on 

the commonly used health care RWD—claims and/or electronic health record (EHR) 

data. New initiatives evolved during the pandemic expand the types of RWD used 

to include surveillance data, consumer data, and epidemiological survey data. While 

most of the initiatives are closed systems with restricted access to their participating 

organizations/stakeholders, others were set up as open-source platforms or data 

aggregators, with the goal of making data rapidly available to a broader research 

community or to the general public in the COVID-19 era. 

Six COVID-19 RWD multi-stakeholder initiatives are covered in depth in this chapter, as 

illustrative examples that may help us understand the future of COVID-19 research—

and the future of RWD and RWE. Four of these were initiatives adapted from 

existing infrastructures, while the other 2 emerged during the COVID-19 pandemic. 

In our selection of initiatives for detailed description, we considered the need to 

cover different geographic locations (international, United States [US], Europe) and 

stakeholders (open science collaborative, government, health care-focused private 

stakeholders, technology-focused private stakeholders, private-public partnerships). 

The initiatives are:
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• Observational Health Data Science and Informatics (OHDSI): an initiative    

 leveraging existing international distributed health care data in an interdisciplinary   

 collaborative that facilitates open-source analyses to conduct observational    

 studies on COVID-19 disease characterization, treatment, and care 

• FDA Sentinel: an FDA system leveraging a distributed data network with a common  

 data model as well as other standalone data sources to conduct COVID-19-related   

 studies

• OpenSAFELY: an initiative that enables the access of multiple United Kingdom (UK)   

 government data sources in a reliable and protected platform to address COVID-19   

 research needs

• Vaccine Monitoring Collaboration for Europe (VAC4EU): an international non-  

 profit association set up with the aim to conduct collaborative real-world analysis on   

 vaccines. The entity was founded as a result of the Innovative Medicines Initiative-  

 funded ADVANCE project that was initiated after the H1N1 pandemic

• COVID-19 Research Database: a cross-industry, cross-sector initiative composed   

 of institutions that donate technology services, health care expertise, and de-   

 identified data in the US for COVID-19 observational research. The data repository   

 contains integrated, linked data sets from multiple sources, from the more traditional  

      RWD(claims, EHR) to life insurance claims, consumer data, and mortality records 

• COVIDRIVE: a public-private partnership leveraging the existing vaccine    

 effectiveness platform in Europe to comprehensively examine COVID-19 vaccine   

 effectiveness across a range of products and assist vaccine companies in fulfilling   

 their regulatory obligations 

As we continue through the COVID-19 era, questions to consider include: 
• What other epidemiological RWD sources have emerged, expanded, changed, or   

 become more accessible for COVID-19 observational research purposes? 

• Which ones will continue to serve as methods to further understand COVID-19   

 disease and the effects of preventive and therapeutic interventions? 

• In what ways has this global health emergency altered the way we approach RWD to   

 generate RWE? 
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The Observational Health Data Sciences and Informatics (OHDSI), an 
international network of researchers and observational health databases 
Link: OHDSI – Observational Health Data Sciences and Informatics7

Brief description of the OHDSI initiative and data
The Observational Health Data Sciences and Informatics (OHDSI, pronounced 

"Odyssey") collaboration is an open-science, multi-stakeholder, interdisciplinary 

community. Its goal is to use large-scale open-source analytics to generate evidence 

that promotes better health decisions and care. OHDSI incorporates an international 

network of researchers and observational health databases with a central coordinating 

center located at Columbia University. As of November 2021, the community included 

2367 researchers from 74 countries, and health records for about 800 million people 

from around the world. 

OHDSI’s health data network is based on the Observational Medical Outcomes 

Partnership (OMOP) Common Data Model (CDM), enabling federated analytics 

amongst collaborators. OHDSI Researchers develop standards8 and open-source 

software9 to standardize and facilitate analyses. Research within OHDSI includes 

characterization, medical product safety surveillance, comparative effectiveness 

research, personalized risk prediction, and methodological research.

The OHDSI model allows researchers and data partners to contribute data without 

sharing patient-level information and ensures that common analytical code can be 

applied across databases. Some data partners collaborate on code and then run that 

code on the data to which they have access.7 Other partners collaborate by running the 

code without having contributed to the writing of code. OHDSI’s structure and analysis 

flow diagram is depicted below (Figure 5.1).
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Figure 5.1. OHDSI Structure and Analysis Flow Diagram10

The OHDSI community is closely tied to the European Health Data & Evidence Network 

(EHDEN) consortium within the Innovative Medicines Initiative (IMI) in Europe. EHDEN11 

is developing the required infrastructure for observational health research using the 

OMOP CDM federated network model across Europe, through a community of data 

partners and small to medium enterprises (SMEs).

OHDSI and EHDEN COVID-19 observational research: International federated 
data networks and CDM 
Early in 2020, OHDSI and EHDEN joined forces to address urgent research questions 

related to COVID-19 by building on the existing communities, available data sources, 

software, and infrastructures created by both initiatives. 

From March 26-29, 2021, OHDSI hosted a COVID-19 virtual 4-day study-a-thon12 to inform 

health care decision-making in response to the global pandemic. Supported by EHDEN, 

the study-a-thon convened more than 300 researchers from 30 countries, with access to 

37 health care databases with COVID-19 patient data. 
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Fifteen workstream groups were created, each addressing different research questions. 

Five major milestones were established for each research question: 1) Review relevant 

literature and develop the study protocol, 2) Develop and evaluate phenotypes, 3) 

Develop the study packages (these are freely available via the OHDSI GitHub),13 4) 

Execute these study packages across the available data network, 5) Review findings by 

clinical experts and disseminate the results. 

Phenotypes and cohorts were also defined, with a total of 355 cohorts created. Of 

these, 114 were reviewed and validated for use in the study-a-thon studies (data.ohdsi.
org)13 Execution of studies began almost immediately. 

Since March 2020, OHDSI has been focusing on COVID-19 major research in areas 

which can be systematically examined across the OHDSI network. These include: 

• COVID-19 characterization and COVID-19 disease natural history by defining    

 diseases and populations of interest, illustrated by the CHARYBDIS Project    

 (Characterizing Health Associated Risks, and Your Baseline Disease In SARS-COV-2)

• Population level estimation to examine the comparative safety and effectiveness   

 of COVID-19 therapies, addressed by Project SCYLLA (SARS-Cov-2 Large-scale   

 Longitudinal Analyses) which focuses on COVID-19 treatments 1) administered   

 during hospitalization and prior to intensive services, 2) administered during    

 hospitalization after initiating intensive services, and 3) administered after COVID-19   

 positive testing and prior to hospitalization

• Patient-level prediction, illustrated by study Seek COVER: Development and    

 validation of a personalized risk calculator for COVID-19 outcomes in an    

 international network

Key features characterizing the OHDSI community and related initiatives, such as 

EHDEN, in their ability to contribute to COVID-19 observational research include:

• Research and data partners multi-stakeholder community with a global geographic   

 reach

• Federated data networks, including EHR, hospital billing data, and insurance claims

• Data harmonization, data using the OMOP CDM

• Established and validated COVID-19 cohorts, with regular data refresh

• Systematic approach to generate evidence on COVID-19

• Open community, open-source (OHDSI Studies · GitHub)13
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• Protocols, analysis codes, results publicly available (COVID-19 Updates Page –   
 OHDSI,14 OHDSI Studies · GitHub)13

• Pre-prints and scientific publications available 

• Possibility to contribute to OHDSI working groups15

• Possibility to propose research questions and lead studies 

• Use of study results to inform health care system and regulatory decision making

OHDSI case studies
The OHDSI data network enabled a rapid baseline analysis of COVID-19 in early 

hotspots using routinely collected primary care EHR data, hospital billing data, and 

insurance claims, initially from the US, South Korea, and Spain. 

One first study described the characteristics of adults hospitalized with COVID-19 by 

training a predictive model for influenza and testing it against COVID-19. An analysis of 

data from 34,128 COVID-19 patients compared to 84,585 individuals hospitalized with 

influenza in 2014–2019 found that hospitalized COVID-19 patients were more likely to be 

male, younger, and have fewer comorbidities and less medication use. Their conclusion 

was that “while protecting groups vulnerable to influenza is likely a useful starting point 

in the response to COVID-19, strategies will likely need to be broadened to reflect the 

particular characteristics of individuals being hospitalized with COVID-19.”16 

When angiotensin-converting enzyme inhibitors and angiotensin receptor blockers had 

been postulated to increase susceptibility to COVID-19, an OHDSI-based study found 

no clinically significant increased risk of COVID-19 diagnosis or hospital admission-

related outcomes, “suggesting users should not discontinue or change their treatment 

to decrease their risk of COVID-19.”17 

In response to the emergency use authorization of hydroxychloroquine for COVID-19, 

OHDSI was used to conduct a large cohort study of rheumatoid arthritis patients 

(without COVID-19) who were taking hydroxychloroquine. The study found that the 

addition of azithromycin to hydroxychloroquine appeared to be associated with 

increased risk of heart failure and cardiovascular mortality.18
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Other studies have examined COVID-19 among children and adolescents,19 patients 

with prevalent autoimmune diseases,20 patients with obesity,21 and patients with a 

history of cancer.22 The use of repurposed and adjuvant drugs in patients hospitalized 

with COVID-1923 was also examined, and the OHDSI framework was used to externally 

assess the validity of a COVID-19 risk model.24 An updated list of preprints and 

published OHDSI studies can be found at the OHDSI webpage.14 

OHDSI impact and perspective
OHDSI has contributed to the understanding of key disease knowledge gaps initially 

posed by the pandemic. Results from studies conducted by OHDSI have informed 

clinicians, health care systems, and regulators. These results have contributed to better 

management of COVID-19 patients during the acute phases of the pandemic and have 

permitted real-time evaluation of COVID-19 therapies by regulators. 

Daniel Prieto-Alhambra, a key contributor to OHDSI, describes it as “a very inclusive 

community in which basically anyone is invited to come and join and work with us. 

You just join the forums, attend one of the calls, and join a working group. It’s an 

open science community.” EHDEN, which he finds is often conflated with OHDSI in 

discussions, has a different but complementary aim “to generate a new transparent, 

fair, data access network in Europe. They work very nicely together.” Prieto-Alhambra 

describes a parallel process to OHDSI’s study-a-thon” that he calls an “Evidence-a-

Thon.” New data partners in the EHDEN network, are asked to run one study that 

has already been completed in other databases, review the results, and write up the 

findings. The process not only tests the CDM, but also engages new data partners 

immediately.

OHDSI community researchers have defined a “long research agenda” to address 

future COVID-19 research needs. That agenda includes the characterization of 

COVID-19 over time (as a condition that changes with vaccinations and variants), 

long COVID-19 or persistent COVID-19, the sequelae of COVID-19 (organ failure, 

cardiovascular disease, and thrombotic events), the impact of current treatments, and 

new treatments that will arise to treat the virus and its complications. It also includes 

questions related to vaccine safety and effectiveness, plus community-level factors and 

non-pharmacological interventions.
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Food and Drug Administration (FDA) Sentinel System, US 
Link: https://www.sentinelinitiative.org/25

Brief description of the Sentinel Initiative and data
The US Food and Drug Administration (FDA) leads the Sentinel Initiative,25 which aims 

to develop new ways to assess the safety of approved medical products including 

drugs, vaccines, and medical devices. The initiative was created to meet a mandate 

by the US Congress in the FDA Amendments Act of 2007. Launched in 2009, it has 

developed into “the largest multisite distributed database in the world dedicated to 

medical product safety.”26 The Biologics Effectiveness and Safety (BEST) System is 

also part of the Sentinel Initiative, launched in October 2017 to expand and enhance 

the Center for Biologics Evaluation and Research (CBER) “access to new and better 

data sources, methods, tools, expertise, and infrastructure to conduct surveillance and 

epidemiologic studies.” 

The Sentinel System data consists primarily of administrative claims and some EHRs 

from US national and regional health plans, integrated delivery systems, and Medicare 

fee-for-service data from Centers for Medicare and Medicaid Services (CMS). These 

partners transform their data into the Sentinel Common Data Model, but maintain 

possession and operational control over their data. During the data transformation, 

identifiable patient information is removed or masked. The standardized format enables 

the use of routine analytic programs, enabling rapid analyses without the need for 

customized code.27 In all, the Sentinel Distributed Database includes claims data on 

approximately 70 million individuals per year from all 50 US states, covering 800 million 

person years.

Other Sentinel partnerships25 include EHR based organizations and networks—HCA 

Healthcare, a hospital system with over 140 facilities, the National Patient-Centered 

Clinical Research Network (PCORnet), and EHR data aggregators (TriNetX, Veradigm, 

IBM Explorys).

The COVID-19 pandemic prompted a rapid expansion and enhancement of Sentinel. 

In response, Sentinel created the Rapid Distributed Database with a subset of the 

national health plans and integrated delivery systems. While data in the typical Sentinel 

Distributed Database is generally 6 months old, allowing for claims to “settle,” the 
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Rapid Distributed Database is refreshed approximately every 2 months, enabling the 

FDA to have access to more timely data. The Rapid Distributed Database also maintains 

the capability to allow for the conduct of targeted chart reviews.

To ensure completeness of information, the inpatient EHR data from HCA Healthcare 

includes discharged patients only. Importantly, in addition to standardized data on 

diagnoses, procedures, and medications, nursing documentation notes have been 

included to supplement diagnosis and procedure codes for identification of oxygen 

related therapy and non-invasive mechanical ventilation. 

The ability of the FDA to quickly use Sentinel claims data and HCA Healthcare data 

to study COVID-19 was facilitated by past work on influenza in collaboration with the 

FDA’s Office of Counterterrorism and Emerging Threats28 and an early validation study 

to assess the performance of an International Classification of Diseases, Tenth Revision 

(ICD-10)-based algorithm to identify inpatient COVID-19 patients.

As with all studies using RWD, a robust assessment of whether a study is fit-for-
purpose29 is required for every proposed study to determine the best of the available 

sources for COVID-19 work in the Sentinel System. With the Rapid Distributed 

Database, the “freshness” of the data comes with challenges, including the need 

to understand completeness of the data by care setting (e.g., inpatient data lag 

behind ambulatory data) and claim type (e.g., encounter-based diagnoses lag behind 

outpatient pharmacy dispensations). Further, investigators now and in the future will 

have to understand and possibly adjust for changes in general health care utilization 

during the pandemic, or even issues such as the use of certain specialized wards for 

isolation of severe COVID-19 cases. As always within Sentinel, data quality review is a 

high priority and robust methods are in place for the various data sources. 

The Sentinel System and COVID-19 observational research
Link: https://www.sentinelinitiative.org/assessments/coronavirus-covid-1930,31

Sentinel COVID-19 related goals include describing the course and outcomes of 

COVID-19 illness (including changes over time) in various demographic groups 

determining prognostic factors for COVID-19 based on data early in the course of 

illness. These data may allow the examination of determinants of COVID-19-related 

complications, and provide a benchmark—serving as an external control—for single-
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arm trials of COVID-19 treatments in relevant patient populations. Sentinel is also used 

to study the COVID-19 pandemic in real time.32

Sentinel developed a COVID-19 Natural History master protocol to serve as a guide 

for future COVID-19 studies. The master protocol includes translation of inclusion and 

exclusion criteria and clinical endpoints and definitions that reflect clinical concepts 

(such as COVID-19 severity categories and complications). Code lists are provided to 

help define cohorts (including special populations) and pre-existing conditions. This 

harmonization process allows for the assessment of homogeneity of findings across data 

sources, regions, and countries, and promotes collaboration and communication across 

regulatory agencies. This Master Protocol27 is available on the Sentinel website.33

Sentinel Initiative COVID-19 case studies
Link: https://www.sentinelinitiative.org/assessments/coronavirus-covid-1930,31

Sentinel developed a protocol to estimate the 90-day incidence and risk of death from 

arterial and venous thrombotic events among patients with COVID-19, and compare 

their risk of these events to that of patients with seasonal influenza, using propensity 

score-based adjustment. Within Sentinel, the protocol is being implemented with data 

from integrated delivery systems and national claims partners. This protocol has been 

posted on the Sentinel website and was also disseminated through the COVID-19-

Evidence Accelerator sponsored by the Reagan-Udall Foundation for the FDA. The 

European Medicines Agency (EMA) will conduct a parallel study among patients with 

COVID-19, and a meta-analysis may ultimately be conducted with the EMA- and FDA-

sponsored results.34,35

Sentinel’s pandemic preparation activities mentioned above were leveraged to develop 

ongoing surveillance reports of COVID-19 patient census and clinical characteristics 

in HCA Healthcare, generating bi-weekly reports that examine patient demographic 

and medical characteristics, treatment and care received, and complications from 

COVID-19 using inpatient electronic medical record (EMR) data. The work defines 

markers of illness severity similar to those used in clinical trials. Importantly, the project 

has examined the capture of oxygen-related therapy. Whereas a code-based approach 

identified 28% of patients diagnosed with COVID-19 as having received oxygen therapy, 

adjudicated standardized nursing documentation data revealed that 79% received 

ventilation or supplemental oxygen (capture of invasive mechanical ventilation did not 
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significantly change when using nursing documentation). These inpatient EHR data 

are updated approximately every 2 weeks, and analyses are restricted to discharged 

patients with complete billing.36

Little information is available to support understanding the natural history of COVID-19 

disease in pregnant women, or the impact of COVID-19 treatment on pregnant women 

or the developing fetus. In order to study the impact of COVID-19 on pregnancy, 

the FDA has partnered with the EMA on their CONSIGN (COVID-19 infectiOn aNd 

medicineS In preGNancy) project, which will study COVID-disease in pregnant women 

across 8 European countries. Sentinel is implementing a parallel study using validated 

analytic tools to estimate the prevalence of select medicines in pregnant women with 

and without COVID-19, and in nonpregnant women with COVID-19. The study will also 

describe disease severity and clinical outcomes of pregnant women with COVID-19, 

according to treatments received during pregnancy, and compare these data with those 

of nonpregnant women of reproductive age with COVID-19.37

Sentinel COVID-19 impact and perspective
The success of the Sentinel System goes beyond the ability to have rapid access to 

COVID-19 related data. The work has successfully demonstrated the ability of the 

FDA to take on more ambitious protocols (such as the pregnancy study cited above), 

conduct drug monitoring projects (https://www.sentinelinitiative.org/methods-data-
tools/methods/near-real-time-monitoring-critical-drugs-care-patients-covid-19)38 on 

a wide scale, and conduct collaborations with other regulatory agencies. The Rapid 

Distributed Database will continue into 2022 and will be reassessed to determine 

whether the initiative will continue. 

In May 2021, Acting FDA Commissioner Janet Woodcock, MD, summarized Sentinel 

and related initiatives as ways that “during this global pandemic, the FDA worked 

to protect the American public by using every tool at its disposal to quickly review 

and act on new therapies for COVID-19.” She concluded that in addition to reducing 

administrative costs and time, master protocols “can also increase data quality and 

efficiency through shared and reusable infrastructure . . . advantages [that] are of 

particular importance during a public health emergency such as the current SARS-

CoV-2 pandemic, where there is a critical need for efficient drug development. The FDA 

expects master protocols to continue to play an important role in addressing the public 

health needs created by the pandemic and in generating clinical evidence in general.”39
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OpenSAFELY, UK
Link: OpenSAFELY: Home40

Brief description of the OpenSAFELY initiative and data
OpenSAFELY is a secure, transparent, open-source software platform for analysis of UK 

EHR data. It allows the user to create a trusted research environment associated with 

their own database or to add a layer of privacy to an existing database which can then 

be opened for wider use. 

Created with public and charitable funding for the benefit of population health, 

OpenSAFELY was the product of collaboration between the DataLab41 at the University 

of Oxford, the London School of Hygiene and Tropical Medicine EHR Research Group,42 

The Phoenix Partnership (TPP) and EMIS Health EHR systems, National Health Service 

(NHS) England, and NHSX (a joint unit of NHS England and the Department of Health 

and Social Care). Development of the initiative was planned before COVID-19, but when 

the pandemic emerged, the initiative sped up rapidly and was quickly deployed within 

the secure data centers of the two largest electronic health record providers in the UK 

NHS—TPP and EMIS. This allowed researchers to access NHS records while minimizing 

the sharing of confidential patient information.

How does OpenSAFELY work? 
Without access to raw data, the platform allows researchers to build a “dummy” data 

set (of any size, but typically of 100,000 records) that is modelled from the real data. 

The dummy data set contains the same structure, variable names, and variable types 

that would be created if the same code was submitted to run on the real data. For 

each variable, the researcher can set expectations for the distribution of that variable in 

the dummy data (e.g., 15% of records should have an asthma diagnosis). Researchers 

then develop their analysis code for statistical testing, graphs, tables, and dashboards 

against this dummy data, using open tools and services including GitHub. When 

both the data management code and data analysis code are capable of running to 

completion on the dummy data, the user can securely send the code into the live data 

environment to be executed against the real patient data. Outputs generated by the 

code are stored on the secure server until at least 2 trained output checkers review the 

outputs for any privacy concerns, including redacting tables or figures that have counts 

less than 5. The redacted tables are then released back to GitHub for the researcher to 

review and use in publications.43
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Every time a researcher subsequently changes their code, it is automatically checked 

by built-in algorithms to ensure it can be run without errors. This design enforces the 

principle that no analysis should happen without being prespecified in code. This clean 

separation of study design and execution makes undisclosed “p-hacking” impossible. 

This also means the code can be shared so that interested stakeholders can see what 

was done, and patients, professionals, and policymakers can confirm that this vast store 

of data has only been used for intended purposes.

Although some code may remain private while an analysis is in development, all code 

and results executed via OpenSAFELY are published, and the results of the analysis 

(with disclosure controls applied) are made publicly available at the time of journal 

submission or at 12 months after the first code was executed. In addition, code lists44 

are available open-source for inspection and reuse the moment they are created for 

analysis at https://www.opencodelists.org. After completion of each analysis, only 

minimally disclosive summary data are released (in summary tables or figures) outside 

the secure environment after strict disclosure checks and redactions.

Common research tasks such as data aggregation, case matching, time-based 

numerator/denominator pairs, low number suppression, and statistical summaries are 

provided as libraries (called “actions”) that are reusable in any supported language 

(currently Python, R, and Stata). Actions are tested and improved over time. Anyone can 

contribute new actions to the action library.

OpenSAFELY and COVID-19 observational research: UK big data, shared code

The OpenSAFELY platform can be used on NHS data (currently under an emergency 

authorization) to support research that will deliver urgent results related to the global 

COVID-19 emergency. That means approved researchers can execute code against the 

pseudonymized primary care records of over 58 million people via OpenSAFELY-TPP 

and OpenSAFELY-EMIS. The records are also linkable to pseudonymized person-level 

data sets from other data providers using a salted hash (a securely pseudonymized 

identification key) generated from NHS numbers.

Under certain conditions, and after review and approval of their project, individual 

researchers have long been able to gain access to specific NHS data sets. But the 
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COVID-19 pandemic meant that a wide range of questions needed to be asked across 

a large body of data as quickly as possible. The OpenSAFELY approach allowed for 

analysis of patient data without moving it out of the secure environments where it 

already resides—or even granting access to the raw data at all.

Beyond EHR data, OpenSAFELY incorporates many external national data sets. Data 

are available from the Secondary Uses Service (SUS) (the main repository for health 

care data in the UK), Hospital Episodes Statistics (HES), the NHS Emergency Care 

Data Set, and death certificate information from the Office of National Statistics. 

The platform also has access to data collected by the Intensive Care National Audit 
& Research Centre45 and the International Severe Acute Respiratory and emerging 
Infection Consortium.46 COVID-19-specific information comes from the COVID-19 

Patient Notification System (standardized data to underpin national death analysis), plus 

the Second Generation Surveillance System (SGSS) and COVID-19 Hospitalizations in 
England Surveillance System (CHESS).47

Gaining appropriate research ethics approval is a prerequisite for using the 

OpenSAFELY platform. (Information governance for OpenSAFELY-TPP and 

OpenSAFELY-EMIS is handled by NHS England.) Research proposals are assessed 

by NHS England and the OpenSAFELY collaboration to ensure they support relevant 

research and planning activities in response to the COVID-19 emergency. As of 

September 2021, the collaborative is creating a public dashboard48 that lists all 

approved projects, including purpose, contact information and affiliated organization 

of researchers, the date when the first code was executed, and links to published 

material. Participant consent is not required under regulation 3(4) of the Health Service 

Regulations for Control of Patient Information (2002),49 and legal gateways involved for 

General Data Protection Regulations do not require consent.

OpenSAFELY case studies
Within 6 weeks of the launch of the initiative, a group of 30 researchers had completed 

and submitted their first analysis of NHS data for pre-print: “OpenSAFELY: Factors 

associated with COVID-19 death in 17 million patients”50 (appearing in final form in 

Nature in July 2020). On behalf of NHS England, the OpenSAFELY team had used the 

platform to quantify a range of potential risk factors for COVID-19-related death. It was 

the largest cohort study conducted by any country to date—one that covered 40% of 

adults in the UK. The underlying population included all adult patients registered with 
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a general practice using TPP software who had at least 1 year of data history prior to 

February 1, 2020. Of the 17,278,392 individuals meeting this definition, 10,926 deaths 

from COVID-19 had been reported in Office for National Statistics (ONS) data by May 

6, 2020. Findings of the analysis included associations between COVID-19 death and 

older age, male sex, non-White ethnicity, lower socio-economic status (SES), and many 

factors related to comorbid conditions and medical history: respiratory, cardiovascular, 

cerebrovascular, neurological, hepatic, renal, immunosuppressive conditions, recent 

cancer history, and diabetes. The final paper included an age-stratified analysis and a 

model with age as an interaction term to inform more accurate risk prediction.

The collaborative followed up on the topic with a more sophisticated model for 

predicting COVID-19 related death (relative and absolute estimates of risk in the 

context of changing levels of circulating virus) and factors associated with deaths due to 

COVID-19 versus deaths due to other causes in the same time period.51

Later in 2020, the OpenSAFELY Collaborative published “Risk of COVID-19-related 

death among patients with chronic obstructive pulmonary disease or asthma prescribed 

inhaled corticosteroids” in Lancet Respiratory Medicine.52 An observational cohort 

study investigated the association between inhaled corticosteroids (ICS) and COVID-

19-related death among people with chronic obstructive pulmonary disease (COPD) or 

asthma. Early reports of hospital admissions during the COVID-19 pandemic showed a 

lower prevalence of asthma and COPD than might be expected for an acute respiratory 

disease such as COVID-19, leading to speculation that ICS might be protective. The 

paper found no association, and the National Institute for Health and Care Excellence 

(NICE) responded by noting the study in their rapid guideline for severe asthma during 

COVID.53

Other OpenSAFELY studies published in 2020 addressed issues that were being actively 

discussed and debated at the time. One investigated the effectiveness of routine 

hydroxychloroquine use for prevention of COVID-19 mortality (not for treatment of 

COVID-19).54 No evidence of benefit or harm was found after adjustment for patient 

characteristics including existing health conditions. Another assessed the association 

between routinely prescribed non-steroidal anti-inflammatory drugs (NSAIDs) and 

deaths from COVID-19, finding no harmful effect.55 
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OpenSAFELY researchers also investigated ethnic disparities in COVID-19,56 risks for 

people with learning disabilities,57 and risks for people with or without children in their 

household.58 

When the SARS-CoV-2 variant B.1.1.7 emerged in England, a rapid analysis was done to 

estimate the case fatality risk for variant to non-variant cases, adjusting for demographic 

factors and comorbidities. Early vaccination trends were examined. The collaborative 

also published observations on how to identify care home residents in the data and 

trends in the clinical coding of long COVID-19 in primary care.59 

OpenSAFELY impact and perspective
Alex Walker, a lead DataLab researcher, says the rapid expansion of the initiative 

was born out of urgency: “We needed to know what groups of people were most 

vulnerable, how the virus affected them, which drugs might help or hinder when treating 

patients, and what happened to patients who recovered from infection. To answer 

these questions quickly, we needed an unprecedented amount of clinical patient data.” 

Walker says that now that those data have been gathered, “OpenSAFELY gives us the 

power to quickly respond to emerging clinical population health and policy challenges 

with precise data and open methods.” With this tool, “researchers can continue 

to provide immediate answers to extremely urgent questions in any future health 

emergency.”60

So what is the impact on the future of RWE? Ben Goldacre, the Director of DataLab and 

joint principal investigator for OpenSAFELY, says, “COVID-19 could—and should—be 

the turning point; however, it all hangs on modern, open, reproducible techniques.” He 

refers to OpenSAFELY as an example of a “collaborative data science ecosystem.”61

Sebastian Bacon cites DataLab’s roots in evidence-based medicine, saying that the 

goal was to “do evidence-based medicine better by getting epidemiologists, clinicians, 

researchers, and software engineers all working together.” In personal correspondence 

(September 2021), Bacon wrote that OpenSAFELY “is best practices encoded in 

software . . . you are forced to do things safety and efficiently.” 

In most analyses of EHR data, even on the same database, data management tasks are 

achieved by a wide range of individualized methods, using different tools, platforms, 

and programming languages. (Ben Goldacre equates this with “building a fridge every 
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time you need a cold beer.”)61 By restricting the user to OpenSAFELY tools, variable 

definitions and code are created so they can be read, understood, and adapted by 

other users. Differing variable definitions can be seen and tested against one another. 

Activity on the platform is publicly logged and any code used for data management 

and analysis is shared to enable scientific review and efficient reuse. In this way, reusable 

code and “reusable knowledge objects” are created.

When asked if it was inconvenient to be restricted to a set of tools and kept at a 

distance from the data, Bacon says, “Yes. But that’s exactly the reason there have 

been poor security practices in the past—or poor privacy practices—because it’s not 

convenient . . . people use the word ‘password’ for their password, because it’s not 

convenient to have strong passwords. That’s the central problem we’re trying to solve. 

Yes, some aspects of OpenSAFELY are slow compared to doing it the easy but unsafe 

way, so we aim to solve that by creating additional tools and services that make it easier 

for people to choose to do the right thing. To the OpenSAFELY team, the tradeoff is 

access to powerful data sets, to open-source code, and to features that can be added 

as requested.” 

Regarding complex study designs and machine learning, Goldacre says “It’s all 

theoretically possible, but not all fully implemented yet—we are implementing 

functionality for our users as the requirements come up.”61      

Goldacre claims we are at the point of a culture shift: “In the past it was quite natural—

because data management and data collection was such a laborious and uncommon 

business—for people to assert monopolies . . . that the person who collected and 

managed the data would be the only person who would analyze it. It is only since 

computational tools have become more widely accessible that it has become more 

common for lots of people to expect to . . . reproduce things and examine the methods 

that were used.”61 He compares this period to 10-15 years ago, when clinical trial 

reporting practices were changed, requiring public registration for all clinical trials (and 

all interventions within those trials) and strongly encouraging result reporting. That was 

a shock at the time—but is now an accepted norm. 
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Vaccine Monitoring Collaboration for Europe (VAC4EU) 
Link: https://vac4eu.org

Brief description of the VAC4EU initiative and data
VAC4EU, a not-for-profit international association, is a research driven infrastructure 

(RI) that is creating a major and highly necessary leap in advancing knowledge about 

vaccines after licensure in the EU market by using novel and existing real-world data. 

Its governance and sustainability solutions are built on the blueprint that was written by 

the European Center for Disease Control as part of the European Commission funded 

ADVANCE project (2013–2019). The ADVANCE project was funded by the European 

Commission and comprised 47 organizations including EMA.

The influenza A/H1N1 pandemic in 2009 lessons showed that the monitoring of 

vaccine benefits and risks in Europe had potential for improvement if different public 

and private stakeholders would collaborate better.62 Stakeholders recognized that 

there were clear benefits for an EU collaborative approach, and the ADVANCE project 

showed this was possible. During the project, the foundations of the VAC4EU legal 

entity were established, and the entity was established in October 2019 and signed by 

the King of Belgium in January 2020. 

As of January 2022, VAC4EU has 25 organizations as members and provides access to 

a large network of experts in the area of vaccinology, medicine, data science, public 

health, pharmacovigilance, and data and regulatory science. As members, these experts 

have access to routine health data on more than 150 million European citizens, as well 

as access to the tools to analyze these data in a federated manner for a wide variety of 

questions. The mission of VAC4EU is to access, characterize, and analyze available and 

newly collected health data to allow for evidence-based decisions by people who need 

to regulate, advise, prescribe, or decide on vaccines.

VAC4EU uses the ConcePTION common data model63 as a basis, a generic common 

data model that was designed by ConcePTION and VAC4EU partners after 10 years 

of lessons learned around collaborative studies in Europe.64 It requires syntactic 

harmonization of local data through an extraction transformation load process (ETL). 

The data analytics pipeline conducts semantic harmonization in a transparent manner.
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VAC4EU creates standards, builds community, facilitates sharing knowledge and 

conducting studies, and provides tools and infrastructures. Its governance is described 

in statutes and bylaws. VAC4EU is a partner in the EU Pharmacoepidemiology & 

Pharmacovigilance research network (EU PE &PV) and has boosted much of the EMA-

tendered research into the COVID-19 vaccines. EU PE&PV is a consortium of more than 

20 ENCePP centers coordinated by Utrecht University that holds framework service 

contracts with EMA since 2015 for the conduct of pharmacoepidemiological studies.

VAC4EU works according to a federated system in which data stay local, and open 

source analytics, developed in R programming language by its members, are sent 

to participating data partners. The organization allows for rotation and flexibility 

of roles and responsibilities across studies, which allows for scaling up and sharing 

of knowledge. Access to the infrastructure and tools is provided by the VAC4EU 

secretariat. 

VAC4EU and COVID-19 observational research 
The ACCESS (vACcine Covid-19 monitoring readinESS) project under VAC4EU was 

funded by EMA through the EU PE & PV research network to ensure that a European 

infrastructure was in place to effectively monitor COVID-19 vaccines in the real world, 

once these were authorized in the European Union. The project started May 2020 and 

ended July 2021. The ACCESS project produced the following deliverables which went 

through EMA and stakeholder review:

• A list of 37 events of interest with definitions, ICD-9, ICD-10, Read, International     

 Classification of Primary Care (ICPC), and Systemized Nomenclature of Medicine   

 (SNOMED) codes (available on VAC4EU Zenodo community (https://www.   

 zenodo.org/communities/vac4eu/?page=1&size=202)

• Background rates of 41 adverse events of special interest (AESI), including the   

 AESI Background rates of AESI protocol (EUPAS 37273), results of background rate   

 calculations (https://vac4eu.org/covid-19-tool/), and report with 41 AESI plus data65   

 on 10 data sources across 7 countries in Europe

• Eight template protocols for different types of studies to be adapted for full    

 implementation to local situation: (https://vac4eu.org/covid-19-vaccine-monitoring/) 
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• Signal detection based on cohort event monitoring

 �Cohort event monitoring to assess safety of COVID-19 vaccines using patient-  

  reported events, a protocol template from the ACCESS project

• Rapid assessment of new safety signals based on electronic health record data 

 �Rapid assessment of COVID-19 vaccine safety concerns through electronic health   

  records: a protocol template from the ACCESS project

• Safety signal evaluation studies (EHR or hospital based)

 �Safety evaluation of COVID-19 vaccines through electronic health records: a    

  protocol template from the ACCESS project

 �Safety Protocol for Hospital Case-Based Monitoring of Specific Adverse Events   

  Following COVID-19 Vaccines: A Protocol Template from the ACCESS project

• Effectiveness studies (EHR or hospital based)

 �Protocol for COVID-19 vaccine effectiveness studies (test-negative design studies):   

  a protocol from the ACCESS project

 �Assessment of effectiveness of COVID-19 vaccines through electronic health   

  record: a protocol template from the ACCESS project

• Coverage study (EHR/registry based)

 �Estimation of COVID-19 vaccine coverage using registers and EHR: a protocol   

  template from the ACCESS project

• Feasibility assessment of countries to participate in studies, including a final report 

VAC4EU also organized monthly scientific webinars to discuss different aspects of the 

ACCESS work which were open to the public. Webinars are publicly available from the 

VAC4EU website Early-Covid- Vaccine-Monitoring. 

VAC4EU case studies 
The Early-Covid-Vaccine-Monitor project under VAC4EU was funded by EMA through 

the EU PE & PV research network from November 2020–November 2021 and monitored 

COVID-19 vaccines in 8 countries using 2 complementary methodologies which have 

been described in the EU PAS register:
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• A prospective cohort event in which more than 100,000 vaccinated persons across 6   

 countries were included and monitored through apps/internet 

• A retrospective cohort study in 4 countries with short lag-time, monitoring the   

 incidence rates of adverse events of special interest and COVID-19 prior to    

 vaccination and post vaccination (https://www.encepp.eu/encepp/viewResource.  
htm?id=44372)

The project was focused on monitoring of incidence, and not signal detection nor signal 

evaluation. VAC4EU provided expertise and tools.

In addition, VAC4EU leads a COVID-19 Vaccine Monitoring Study (CVM) project funded 

by EMA through the EU PE & PV research network from April 2021–April 2023. This 

project aims to: 

• Conduct prospective cohort event monitoring across 10 countries, focusing on   

 special populations (children, immunocompromised, pregnant), general population,   

 and booster doses 

• Conduct retrospective cohort studies and self-controlled studies in 10 data sources   

 ready to assess safety signals. Studies on Multi-Inflammatory Syndrome and    

 Myocarditis have been conducted (https://www.encepp.eu/encepp/viewResource.  

 htm?id=42637)
• Conduct methodological research on comparators and designs related to COVID-19  

 vaccine studies

VAC4EU is a member of the Global Vaccine Data Network (GVDN) and participates in 

dedicated studies on associations of COVID-19 vaccines and myocarditis, Thrombosis 

with Thrombocytopenia Syndrome (TTS), and Guillain-Barré syndrome (GBS) funded by 

the US Centers for Disease Control and Preventtion (CDC).

Finally, VAC4EU supports its members to contract and implement post-authorization 

safety studies on COVID-19 vaccines for several manufacturers using the VAC4EU tools 

and governance, the ConcePTION data model and pipeline, and the VAC4EU member 

organizations.66–69
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VAC4EU impact and perspective
Lessons from the 2009 pandemic led to the initiation of a collaboration in Europe, which 

was designed, tested, and implemented by the VAC4EU. VAC4EU was established as 

an entity just before the 2019 pandemic was declared, and was able to start its work to 

support the European PE & PV network and the European Medicines Agency in time 

to prepare for large scale collaborative studies. VAC4EU member organizations form 

a vibrant community leveraging the expertise and knowledge from all of its member 

organizations. VAC4EU supports more than 10 official post-authorization safety studies 

on COVID-19 vaccines, protocols, and materials, which are all in the public domain. 

COVID-19 Research Database, United States 
Link: https://covid19researchdatabase.org/70

Brief description of the COVID-19 Research Database initiative and data
The goal of the COVID-19 Research Database70 is to provide public health and policy 

researchers with access to RWD to better understand and combat the COVID-19 

pandemic. The COVID-19 Research Database was born out of the urgent need to better 

understand the effects of COVID-19 and streamline the challenges of managing data 

provider partnerships, patient privacy, and technological integration.

Set up in the spring of 2020, the COVID-19 Research Database consortium is a cross-

industry, cross-sector collaborative composed of institutions that donate technology 

services, health care expertise, and de-identified data in the US. The data repository 

constructed by the consortium contains integrated, linked data sets from multiple 

sources, enabling public health and policy researchers to access RWD. The collaborative 

includes: Medidata (providing the engineering, hosting, and technical services), 

Datavant (providing the linking software), data providers (e.g., Healthjump, Change, 

Veradigm, OfficeAlly, and others), academic and non-profit partners (including Health 

Care Cost Institute), and technology partners (including Snowflake).

In all, 12 de-identified US data sets have been donated by consortium institutions and 

are integrated into a single repository. Data were de-identified using a technology that 

replaces identifiable patient information with an encrypted token; patients with data 

across select multiple data sources were linked using this tokenization process. Linking 

data in this way allows researcher access to a wide breadth of patient data. The data 
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sets are loaded into cloud database management software, and researchers access 

a secure workspace containing analytical tools (e.g., SAS, SPSS, R, Python).

Records from 250 million unique persons and over 5 million patients with COVID-19 

were loaded onto the platform. Data types include medical claims, pharmacy claims, 

EHRs, demographics, life insurance claims, consumer data, and mortality records. 

The longitudinal, patient-level data sets are HIPAA-compliant (de-identified and 

limited). The linkages among the data sets allow for a more complete view of clinical 

care. The linking techniques are also privacy-preserving. All included data are 

structured. Depending on the source, data are refreshed weekly to quarterly. 

Each consortium member is represented on a governance committee that makes 

consortium-level decisions and ensures all stakeholder interests are protected. 

Expert advisory groups are consulted on privacy, patient advocacy, legal issues, 

and strategy. A scientific steering committee, comprised of academics and 

clinical researchers, reviews research proposals for scientific rigor and peer-review 

standards. The database itself can be accessed by academic, scientific, and medical 

researchers. Although the researchers themselves may come from any sector, the 

projects themselves must be non-profit, non-commercial, and related to COVID-19.

Data workflow and technology features are outlined below in Figure 5.2 and Figure 

5.3.71
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Researchers interested in accessing the database can submit a proposal to the Scientific 

Steering Committee. After scientific, privacy, and governance review, approved 

researchers have access to de-identified data, a knowledge base for the data sets, 

and tools (including R, Python, and SAS) at no cost. Record-level joins can be made 

among data sets. All linked data sets are de-identification certified before release for 

research use. Data cannot leave the secure environment, but an analytical report may 

be exported to use in published findings. All results must be made publicly available, 

preferably through peer-reviewed publications. 

COVID-19 Research Database observational research: Dynamic, extensible, 
scalable data integration design
Consortium publications have ranged from disease understanding (e.g., risk factors) 

to resource utilization (e.g., impact on preventive care) and epidemiology (e.g., 

social determinants of risk). Examples of projects that have been conducted include 
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prediction of severity of COVID-19 infection, COVID-19 and social determinants of 

health, risk factors for COVID-19 infection, and implications of policies related to the 

COVID-19 pandemic. Potential longer-term projects include understanding the spread 

of COVID-19 variants, post-vaccination health implications, and understanding of long 

COVID. Findings are intended for practitioners, to help them understand the disease, as 

well as policy makers and public health officials, to help drive informed decision-making 

and improved understanding of the impact on different populations.

COVID-19 Research Database case studies 
The below examples of peer-reviewed publications highlight the range of research 

topics addressable by the diverse array of data assets available in the consortium, in 

topics including risk factors, testing patterns, resource utilization, and primary care 

impacts:

• Racial Disparities in Ischemic Stroke Among Patients with COVID-19 in the United   

 States72

• Assessment of Filled Buprenorphine Prescriptions for Opioid Use Disorder During   

 the Coronavirus Disease 2019 Pandemic73

• Charges of COVID-19 Diagnostic Testing and Antibody Testing Across Facility Types   

 and States74

• Trends in Filled Naloxone Prescriptions Before and During the COVID-19 Pandemic   

 in the United States75

Beyond data diversity, it is the ability to join disparate data sets, in a privacy-compliant 

manner, that sets apart the COVID-19 Research Database consortium. One example of 

this is ongoing work by researchers from Northwestern University, Johns Hopkins, and 

Datavant exploring the intersection of race, income, and mortality due to COVID-19. 

Traditional RWD sources, such as EHR and insurance claims data, are often missing 

detailed information on patient attributes and mortality. To address this gap, a medical 

claims data source, Office Ally, was augmented with mortality data and consumer 

data. Mortality data were obtained from a curated source drawn from government 

agencies, online newspapers, funeral homes, online memorials, direct submissions, 

and other sources that collectively cover over 80% of annual US deaths. Data on 

demographics and income were obtained from a consumer data source, AnalyticsIQ, 

with consumer attributes across >120 million households. In the words of the authors, 

“the key elements utilized in the study were (i) fact of death, which was pulled from the 
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mortality data set, (ii) the physician diagnosis information from the medical claims data, 

and (iii) the racial and income attributes drawn from the consumer data.”76 Through 

the consortium, this study was able to match patients across the 3 data sources, 

confirm privacy-preservation of the linked data, leverage confirmed mortality data, and 

incorporate modeled consumer attributes. 

Another case example highlighting the timeliness of research enabled by the COVID-19 

Research Database is work by researchers at the University of Pennsylvania and 

Medidata Solutions on the association of vitamin D deficiency with COVID-19.77,78 As the 

pandemic unfolded, studies emerged suggesting links between vitamin D deficiency 

and COVID risk.79 Using electronic medical records data, the researchers were able 

to assess associations of pre-pandemic vitamin D deficiency with risk of COVID-19 

infection during the pandemic, initially in oncology populations and later in the general 

population among patient groups at elevated risk for vitamin D deficiency. 

COVID-19 Research Database impact and perspective
The consortium enables an ongoing flow of research questions to be addressed as 

the COVID-19 pandemic evolves. As of May 2021, over 350 academic, scientific, and 

medical researchers have accessed the repository and produced over 40 publications. 

At the time of this writing, the consortium continues to support over 100 ongoing 

project research teams at any given time and is expected to continue at least through 

Spring 2022. 

The success of the consortium has been achieved by enabling a scalable approach to 

integrating disparate data sets for rapid research, with applications and lessons learned 

relevant to future related endeavors. According to the organizers, there are several 

key factors that have contributed to the success of the project that may inform the 

development of future similar engagements. These include: structured data processing 

and access workflows, modularized engineering and architecture with pre-defined 

and validated mechanisms, an agile development methodology, inclusive governance 

and veto rights for stakeholders (which builds trust and willingness to participate), and 

sponsorship and involvement from widely respected and “neutral” figures in setting up 

the consortium. Aniketh Talwai cites data interoperability and governance standards 

as key aspects, but another “lesson learned is to prioritize scale and speed from the 

outset.”
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Key features of the COVID-19 Research Database are listed below:71

• Extensible modularity: Structuring data processing and access workflows as    

 independent modules with pre-defined and validated mechanisms to add in new   

 data feeds and end-users 

• Security by design: Structuring data access to be locked down by default with   

 physical impossibility of unauthorized extraction mitigates concerns about    

 protection of intellectual property

• Agile methodology: An iterative product development approach with new features   

 and data introduced on a rolling basis reduces time-to-access and prevents    

 roadblocks from derailing broader effort 

• Automation to scale: Investing in upfront automation of the data ingestion, linking,   

 and provisioning processes allows for rapid growth in both users and data

• Structured onboarding: Proactively anticipating challenges in end-user experience   

 and mitigating them through comprehensive onboarding process and collateral

• Stakeholder rights: Inclusive governance committee and veto rights on core interests  

 builds trust and willingness to participate

• Credible convener: Sponsorship and involvement from widely respected and    

 “neutral” figures in setting up the consortium ensures openness to engage

• High-bar wide-scope for applications: Allowing end-users latitude to explore a wide   

 range of use-cases and research topics, but enforcing bar on quality of output

COVIDRIVE, Europe
Link: https://covidrive.eu/80

Brief Description of the COVIDRIVE initiative and data
COVIDRIVE is the newest multi-stakeholder COVID-19 RWD initiative covered in this 

chapter. Initiated at the end of 2020, this public-private partnership aims to address 

the need to continuously monitor COVID-19 vaccination programs to assess brand-

specific COVID-19 vaccine effectiveness, supporting vaccine companies in meeting 

their regulatory obligations in a consistent manner as well as public health institutes in 

Europe.

Core requirements for the Risk Management Plan (RMP) for COVID-19 vaccines for 

the EMA state that “effectiveness studies should be included” in the RMP and that 

the Marketing Authorisation Holder (MAH) should “make use of the established EU 
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efforts that can provide brand-specific,” reliable and timely data.81 COVIDRIVE fits 

this recommendation, leveraging an existing influenza vaccine effectiveness platform: 

Development of Robust and Innovative Vaccine Effectiveness (DRIVE).82 DRIVE is a 

5-year Innovative Medicine’s Initiative (IMI) project, conceived as a proof of concept by 

EMA to develop a public-private partnership platform providing yearly brand-specific 

effectiveness estimates for all influenza vaccines and to be used by vaccine companies 

to fulfill their regulatory obligations. Data has been collected in each influenza season 

since 2017 from an expanding network of hospitals and general practitioners in Europe. 

Throughout the project, DRIVE has developed a governance framework fostering 

transparent collaboration between public and private partners for high-quality research 

and vaccine performance evaluation.

Key assets leveraged in COVIDRIVE are an efficient study platform and a transparent 

public-private mechanism with functioning governance including shared decision-

making, mutualization of resources leveraging public and private capacities and funds, 

collaboration in methods, independent study conduct and scientific committee for 

results review, high data quality standards, and regulatory pathways.

As a public-private partnership, COVIDRIVE includes public institutions, small-to-

medium enterprises, and vaccine companies. To date (May 13, 2022), non-industry 

partners include the Foundation for the Promotion of Health and Biomedical Research 

in the Valencian Area (FISABIO) from Spain, P95 from Belgium, and The Finnish 

Institute for Health and Welfare (THL). Vaccine company partners include AstraZeneca 

(UK), CureVac (Germany), GSK (Belgium), Janssen (Belgium), Moderna (US), Novavax 

(US), Sanofir (France), and Valneva (France). The consortium is open to new partners 

(e.g., public health institutes, industry, small-to-medium enterprises, academia) and 

new European study sites. This partnership offers great opportunities to mutualize 

health care practitioners’ resources between companies and leverage existing public 

capacities across Europe, joining forces for a better understanding of COVID-19 

disease and vaccine performance. The first COVIDRIVE study monitors for variants 

of concern and helps provide answers to the critical questions relating to COVID-19 

vaccine effectiveness, including duration of protection of the different vaccines, 

impact of additional vaccine doses, and different vaccine combinations. Beginning 

with initial recruitment of patients in September 2021 from 12 hospitals in Spain and 

Italy, COVIDRIVE is currently planned for 2 years and is designed to quickly expand to 
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other countries across Europe. AstraZeneca (UK) and Janssen (Belgium) are the first 

vaccine companies in this partnership to monitor the effectiveness of their respective 

vaccines. A study team composed of COVIDRIVE partners supports the study sites in 

their data collection, and the first interim results are expected within 6–12 months from 

recruitment initiation. All scientific results will be reviewed by an Independent Scientific 

Committee.

COVIDRIVE and COVID-19 observational research: European framework and data, 
vaccine effectiveness
COVIDRIVE data are collected from hospitals and potentially also primary care centers, 

often building on existing public health surveillance systems and sites. National 

register data can also be used in countries where it is available. The network for this 

observational initiative is expected to include more than 40 hospitals and 500 general 

practitioners in 12 European countries: Austria, Belgium, Croatia, Finland, Germany, 

Iceland, Italy, Netherlands, Poland, Romania, Spain, and the UK.83 

Each study site is responsible for the collection, validation, and management of 

participant-level study data. Participating sites follow a master study protocol and 

related study procedures to ensure high quality standards. Because data collection 

and source documentation will differ across sites, data flow and management are 

documented in detail. Participant-level data are locally transformed to conform to 

a study-specific common minimum data set. The study site performs quality checks 

and processes any findings accordingly, with sufficient documentation to ensure 

transparency and reproducibility. The study-specific common minimum data set, 

composed of data uploaded by the study sites, will be stored on a dedicated secure 

server; the COVIDRIVE Research Server (CRS), following General Data Protection 

Regulation (GDPR) compliance requirements.

COVIDRIVE Case Studies
COVIDRIVE’s initial studies aim at monitoring COVID-19 vaccine effectiveness against 

severe disease for specific vaccine brands. 

These initial vaccine effectiveness studies are using a hospital-based case-control 
study with test-negative control design.84,85 Additional studies addressing other 

aspects related to the evaluation of COVID-19 vaccine benefits are envisioned with 

contributions by study sites and COVIDRIVE partners.

COVID-19 Real-World Evidence Primer 121COVID-19 Real-World Evidence Primer | Chapter Five 121

https://www.encepp.eu/encepp/openAttachment/fullProtocol/42337;jsessionid=bRpdBFgezGy_gxUz8l7PMaoKJHhvD91HziFfjag6zXNsG2CV1F6w!-1455500290
https://www.encepp.eu/encepp/openAttachment/fullProtocol/42337;jsessionid=bRpdBFgezGy_gxUz8l7PMaoKJHhvD91HziFfjag6zXNsG2CV1F6w!-1455500290
https://www.encepp.eu/encepp/viewResource.htm?id=42329


Current areas of interest include: duration of vaccine protection (mid- and long-term), 

characterization of circulating variants and vaccine effectiveness against disease caused 

by those variants and newly emerging SARS-CoV-2 strains, effectiveness over calendar 

time (with date of hospital admission serving as a proxy for changing genetic variants of 

the virus), effectiveness against severe COVID-19 disease, and effectiveness in special 

risk groups such as immunocompromised, frail individuals or subjects with chronic 

conditions or existing comorbidities.

The exposure of interest and vaccination status (including brand information and date 

of vaccination[s]) are collected via vaccination registries, vaccination cards, and medical 

records (depending on country/region). Batch information will be additionally collected 

when available. Context information on public health guidance, national/regional 

immunization recommendations including vaccines recommended by authorities, SARS-

CoV-2 genetic variant circulation, and COVID-19 vaccine label information will also be 

collected.

Potential confounders and effect modifiers collected at all sites include: age, sex, 

history of medical diagnosis for selected morbidities of interest (asthma, lung disease, 

cardiovascular disease, hypertension, chronic kidney disease, type 2 diabetes, cancer, 

immunodeficiency), body mass index, vaccination against pathogens causing COVID-19 

like symptoms (influenza, pneumococcus), calendar time, and previous SARS-CoV-2 

infection. When available, information on precautionary health behaviors (e.g., wearing 

face masks, using hand sanitizer, going to public places), socio-economic variables and/

or ethnicity, being a health care worker, residence in a long-term care facility residence, 

and smoking history will be collected.

COVID-19 vaccine effectiveness will be estimated with random-effects meta-analysis 

of site-specific estimates or Generalized Estimating Equations (GEE). The site-specific 

estimates will be obtained in logistic regression models, adjusting for the confounders. 

A final study report will be written for each of the individual COVID-19 vaccine brands of 

interest. The protocol and study reports are posted on the European Union electronic 
register of Post-Authorisation Studies (EU PAS register)84,85 and the study results will be 

published in peer reviewed open-source international journals. Study sites will remain 

owners of their subject level data. 
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Study limitations may include low sensitivity and specificity of the Reverse Transcription 

Polymerase Chain Reaction (RT-PCR) test, with a bias towards underestimating the 

effectiveness that is proportional to SARS-CoV-2 positivity rates within the patients 

meeting the case definition. The study protocol84,85 posted in the EU PAS register 
provides additional details.

COVIDRIVE impact and perspective
Dr. Javier Díez-Domingo, Head of the Vaccines Research department of the Foundation 

for the Promotion of Health and Biomedical Research (FISABIO) foundation and 

COVIDRIVE co-coordinator, says the first priority of the initiative is to examine COVID-

related hospitalization as an outcome.86 “Hospitalizations were one of the main reasons 

for national and regional governments to impose public health measures such as 

shutdowns, social distance, and wearing of masks to relieve the disease burden on 

the health care systems. Producing accurate and timely information on how well the 

different COVID-19 vaccines protect against hospitalizations and remain protective over 

time is essential to successfully manage the pandemic.”86

Thomas Verstraeten, co-coordinator of COVIDRIVE and CEO of P95 (a company that 

provides consultancy services) says “The current COVID-19 pandemic highlights the 

need for a public-private collaborative environment to generate vaccine effectiveness 

data to advise the design of national immunization programs and to fulfil the 

effectiveness requirements established by the regulatory authorities.”86

Laurence Torcel-Pagnon, a key contributor to COVIDRIVE and evidence generation 

partnership expert at Sanofi, indicates that “the consortium strives at developing 

a framework to leverage the secondary use of the collected data to address future 

research questions to advance knowledge on COVID-19 disease and related vaccines 

performance.” She also emphasizes the importance of multi stakeholder partnerships 

including public health organizations, academia, industry, and research organizations to 

maximize the value of fit-for-purpose RWD to address today’s and tomorrow’s COVID-19 

research questions.

Conclusion 
The selected multi-stakeholder COVID-19 RWD initiatives described in this chapter are 

examples of how best use of data, tools, and networks can greatly contribute to quickly 
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and adequately addressing critical questions on COVID-19 while creating infrastructures 

and sustainable platforms to address current and emerging COVID-19 observational 

research questions. The initiatives presented cover different geographic areas, involve 

different types of stakeholders, and demonstrate that it is possible to urgently address 

key COVID-19 research needs in partnership.

There are common elements in many of these multi stakeholder initiatives that have 

led to their success in COVID-19 research. They are open and multidisciplined scientific 

collaborations with a long-term vision to address multiple types of research questions. 

They build on existing health care data sources and hospital surveillance systems, and 

often use federated (decentralized) data networks. They share tools and code, some 

incorporating common data models to improve transparency and efficiency of research. 

Some of these resources were operating before COVID-19, but the pandemic has 

pushed these multi-stakeholder initiatives to move faster, be more efficient, and 

demand more frequently updated data while ensuring the highest scientific standards. 

Through initiatives like these, current and new COVID-19 observational research-specific 

questions can be answered. If the momentum of such collaborations can be sustained, 

we may also find new ways of enhancing the use and value of RWD and RWE in other 

disease areas to drive clinical, regulatory, and key public health decision making. 
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Chapter 6:  
The COVID-19 

Evidence Accelerator

Real-world data (RWD) have helped advance the nation’s ability to respond to the 

COVID-19 global pandemic by providing situational awareness and expanding the 

capacity to conduct post-market studies of the safety and effectiveness of COVID-19 

diagnostics and therapeutics. The COVID-19 Evidence Accelerator1 is an initiative 

launched by the Reagan-Udall Foundation for the Food and Drug Administration  (FDA 

Foundation),2 in collaboration with Friends of Cancer Research (Friends)3 and on behalf 

of the FDA, to provide a unique venue for major data organizations, government and 

academic researchers, and health systems to share information about COVID-19 efforts, 

and to convene a community to urgently address questions about COVID-19. The 

Evidence Accelerator is just one example of how the FDA is leveraging RWD, which 

intersects with RWD efforts at the FDA and other government agencies (see Figure 6.1).
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COVID-19 Evidence Accelerator
Using RWD to Address an Urgent Public Health Need

A Community of 
data and analytics 
partners ready to 
urgently address 
questions about 
COVID-19. 

A regulatory agency with a rapidly maturing 
appreciation of RWD and RWE in valuating 
new therapeutics, vaccines and diagnostics.

U.S. Government 
agencies with a growing 
interest in the application 
of RWD and RWE OTHER 

GOVERNMENT 
AGENCIES

National Institutes 
of Health

Veterans Health 
Administration

U.S. FOOD & 
DRUG 

ADMINISTRATION
Real-World Data 

Approaches

Regulatory Science

Evidence 
Accelerator

Figure 6.1. Leveraging RWD at the FDA and other government agencies

The Evidence Accelerator includes over 250 organizations that represent health services 

research, regulatory science, academia, government, regulated industry, technology 

companies, and health care analytic companies. 

The Evidence Accelerator community comes together in two ways on three main 
workstreams: Therapeutics, Diagnostics, and Vaccines (Figure 6.2). For each of these 

workstreams, the two pillars of the COVID-19 Evidence Accelerator are Lab Meetings 

and Parallel Analysis (PA). 
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DIAGNOSTICS EA

THERAPEUTICS EVIDENCE ACCELERATOR (EA)

VACCINES EA

Regular Lab Meeting
Weekly Parallel Analysis (PA) Accelerators
Monthly PA Broad Discussion

Regular Lab Meeting 
Weekly PA

Regular Lab Meeting

ONLINE COMMUNITY

Figure 6.2. The Evidence Accelerator Community

Evidence Accelerator Lab Meetings
The FDA Foundation regularly hosts a Lab Meeting which is named for the popular 

graduate school lunch-time forum for gathering and sharing information. For the 

Evidence Accelerator, the focus is on sharing information about COVID-19 and the data 

needed to better understand its epidemiology, diagnosis, treatment, and prevention. 

The Evidence Accelerator abides by Chatham House Rules and requests attendants to 

keep the conversation “in the room” because more often than not, preliminary data are 

being shared in an informal, real-time peer review. From March 2020 to March 2021, the 

Evidence Accelerator has hosted 50 Therapeutics Lab Meetings and 45 Diagnostics Lab 

Meetings.

Evidence Accelerator Parallel Analysis
In parallel analysis workgroups, the Evidence Accelerator1 convenes experts in health 

systems research, regulatory science, data science, statistics, and epidemiology to 

rapidly collect information related to real-world studies of COVID-19. With leadership 

and input from the FDA, a foundational task of this parallel analysis is to understand 

what data are available to answer key COVID-19 questions of interest to public health. 

In the Evidence Accelerator, we crowdsource the relevance of the research questions 
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initially developed by the FDA to get a sense of what, where, and when data are 

available. This exchange fuels the rapid development of master protocols to evaluate 

the safety and effectiveness of multiple treatments or multiple diagnostic tests in various 

sub-populations, both in parallel and in succession. Master protocols enable evaluation 

of the same question across different data systems using a parallel approach to analyses 

to quickly test reproducibility of results and evaluate data heterogeneity (see Figure 6.3). 

Figure 6.3. Parallel analysis

The parallel analysis groups work collaboratively to determine how data elements 

are being extracted and how they are being defined to operationalize a platform that 

can answer current questions, as well as to inform how research activities could be 

conducted in the future. Repeating analyses in parallel through collaborators using 

different analytical techniques and data sources helps strengthen findings and learnings. 

Through a set of community created core principles (Figure 6.4) that underpin all work 
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efforts, the goal of the Evidence Accelerator parallel analysis is to help validate the role 

of real-world data as a tool for rapidly learning about patient characteristics, treatment 

patterns, and outcomes associated with management strategies for COVID-19.4 

Figure 6.4. Community created core principles

Therapeutics and Diagnostics Evidence Accelerator Parallel Analysis Workgroups:
In close collaboration with the FDA, the Therapeutics Evidence Accelerator Parallel 

Analysis workgroup developed key specific COVID-19 research questions for multiple 

organizations and teams to address simultaneously. Initial activities include 1) 

rapidly revising a list of core data elements, 2) identifying those elements critical to 

answering the primary question, and 3) establishing uniform collection parameters. 

The Therapeutics Parallel Analysis workgroup has taken on 3 primary research areas to 

date: 1) effectiveness and safety of hydroxychloroquine (with and without azithromycin), 

2) real-world safety and effectiveness of remdesivir for COVID-19, and 3) the natural 

history of coagulopathy in COVID-19 vs. influenza. This workgroup has met 65 times and 

presented 3 times to a broader audience. Results from the hydroxychloroquine project 

were published,5 and the results demonstrated across 7 databases that administration 

of hydroxychloroquine (with and without azithromycin) appeared to have no effect on 

time to mortality in hospitalized COVID-19 patients. More than 15 organizations have 

engaged in at least one of the parallel analyses (see Table 6.1). 
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The Diagnostic Parallel Analysis workgroup incorporates lessons learned from the 

Therapeutics Evidence Accelerator Parallel Analysis workgroup. It brings analytic 

partners together to address key research questions about diagnostic testing in parallel. 

This workgroup conducted the same 3 initial activities as the Therapeutics Parallel 

Analysis workgroup. These activities are described in detail in a master protocol.6 

This workgroup operates collaboratively to figure out how data elements are being 

extracted and how they are being defined. This enables the group to put a platform 

into use that can answer current research questions. 

Table 6.1. Organizations that have engaged in at least one of the parallel analyses.

Therapeutics: (1) Effectiveness and 
safety of hydroxychloroquine (with 
and without azithromycin), (2) Real-
world safety and effectiveness of 
remdesivir for COVID-19, and (3) The 
natural history of coagulopathy in 
COVID-19 vs. influenza.

Diagnostics: Characterization of the 
utilization and real-world performance 
of COVID-19 serology tests

Aetion (with Health Verity (1); Gilead (2)) Aetion (with Health Verity)

COTA (with Hackensack Meridian) Health Catalyst

Dascena Optum Life Sciences

Datavant (with Northwestern University) Mayo Clinic

FDA Sentinel Regenstrief Institute

HealthPals University of California Health System

OneFlorida

Syapse

Target RWE

TriNetX

University of California Health System

US Veterans Affairs
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The primary research aims were to identify where test data reside in a data ecosystem, 

and to connect that data to enable researchers to answer key questions: 1) Among 

persons with molecularly-confirmed SARS-CoV-2, describe serological testing 

by demographic, behavioral and environmental characteristics, baseline clinical 

presentation, key comorbidities, and bacterial/viral co-infections, 2) Characterize the 

timing of serology testing relative to symptom onset or RNA date by demographic, 

behavioral and environmental characteristics, baseline clinical presentation, key 

comorbidities, bacterial/viral co-infections, and test characteristics (e.g., manufacturer), 

3) Describe demographic, behavioral and environmental characteristics, baseline clinical 

presentation, key comorbidities, bacterial/viral co-infections, and test characteristics 

(e.g., manufacturer) associated with positive serology vs. negative serology, and 4) 

Describe the real-world positive percent agreement of serology compared to positive 

molecular test for SARS-COV-2.7 

The Diagnostics Parallel Analysis workgroup has convened 36 times and presented on 

3 occasions to the Diagnostics Lab Meeting to report out results from their analysis 

to characterize real-world data interoperability, use, and performance of SARS-

CoV-2 serology tests. To date, one manuscript is under review and two others are in 

development.

Learnings from the Parallel Approach to Analysis
The Evidence Accelerator Parallel Analysis taught us many lessons that we can use to 

further the use and effectiveness of real-world evidence beyond COVID-19: 

1. Collaboration: The willingness to collaborate with other stakeholders is a key   

 component of the Evidence Accelerator. Finding ways to leverage this attitude   

 beyond COVID-19 to increase knowledge of resources across diverse groups in   

 the health care and laboratory data ecosystem is imperative. Various diverse   

 panels at large health care conferences, including stakeholders     

 from pharmaceutical, regulatory, and health care areas,8 have mentioned    

 that the willingness demonstrated by groups working with the Evidence    

 Accelerator to share information and resources is unprecedented.     

 Such collaboration may not easily translate to other disease areas,     

 but it should be considered, especially in areas of  high unmet need. The    

 COVID-19 experience highlighted processes that are either      

 duplicative or unnecessary, and we may begin to either do without them or do   

 them more efficiently. 
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2. Data Heterogeneity: Data from claims and electronic health records (EHRs) have   

 an inherently different capture of the patient experience,      

 which necessitates different approaches to identifying comorbidities and events in   

 order to understand the full clinical history for the event of interest.     

 Researchers often have extensive experience in only one data source specifically. In  

 parallel analysis, we must consider multiple data sources and allow protocols that   

 are flexible enough to accommodate the specifics of each data source    

 and to align where appropriate.9–11 The FDA Foundation and      

 Accelerators have built catalogues that outline the different study design    

 approaches taken to accommodate these different data sources. We will make this   

 resource publicly available.

3. Unifying Case Definitions: Multiple definitions that represent the same clinical   

 construct abound in scientific literature. In parallel analysis, we have a unique   

 opportunity to align definitions across studies, intentionally point out     

 differences, and describe how they might explain discrepancies in results. Through   

 this work we have catalogued different case definitions (taking validated    

 algorithms where available) and will post them when publicly available.1 

4. Ascertainment: The ability to fully capture events for a given patient will differ   

 based on the data source. Specifically, EHRs only capture events attended within   

 a specific system and have limited capture of events after discharge if they occur in  

 other systems. Similarly, health care claims systems can typically only     

 capture billable events such as procedures and prescription      

 medications and generally lack the granularity available in the EHR. However, some  

 systems are integrated and able to capture data from both the EHR and claims.   

 There is heterogeneity in the granularity of data regarding the care and medical   

 history of a patient, which is generally more available from EHRs than claims. 
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5. Disclosure Limitations: The ability to identify independence across data partners   

 is complicated when data aggregators are prohibited from disclosing the systems   

 included in their network. Disclosure agreements between the aggregator and   

 participating health systems that allow for the identification of the systems for   

 the purposes of public health activities, or by request, would improve transparency.  

 Alternatively (but not as helpfully), independence of samples could be    

 demonstrated by mapping coverage areas for all partners included in parallel   

 analysis in order to understand the amount of overlap and suggest independence   

 of samples across partners. 

6. Data Flow: In a fragmented health care system that often involves siloed    

 technologies, assembling the data is the first task toward building     

 real-world evidence. In diagnostics, for example, test manufacturer information   

 is often not integrated with laboratory and clinical data for the instrument. A   

 lack of interoperability impedes public health reporting and the ability    

 to assess the performance of the test post-market. For devices like COVID-19   

 tests, the experience during emergency situations demonstrates the need for   

 regulatory authorities to require and incentivize the use of device ID, and to    

 integrate these data for public health reporting  purposes so      

 that post-market safety and effectiveness can be more readily calculated.
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Chapter 7:  
Communicating about 

Real-World Evidence

The coronavirus pandemic brought an unprecedented need to rapidly produce safe 

and effective diagnostics, therapies, and vaccines. The demand to accelerate research 

and development, reinforced by a growing availability of real-world data (RWD), have 

made the health care community and the larger public more aware and receptive to 

the use of real-world evidence (RWE). However, there is also skepticism about using 

RWE to support clinical or regulatory decision-making. In August of 2021, World Health 

Organization officials reported that misinformation about COVID-19 and vaccines was a 

factor in vaccine hesitancy and in an increase in cases around the world.1 

Where to Publish
The peer review process helps promote the publication of valid, balanced, and 

reproducible studies. Additionally, the process can improve the quality of a manuscript 

and even the study itself. However, the tension between the time it takes to leverage 

the rigor and credibility that comes from peer review and the need to disseminate 

findings that may impact public health is even more acute in a pandemic setting. 
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During the pandemic, some journals have slightly modified their publication procedures 

to share findings more quickly, but lags still exist in the process. Researchers have 

options for when they want journal credibility but need to share findings quickly, 

including:

1. Consider the full spectrum of scientific journal articles for publication. Certain   

 information may be more appropriate for a perspective, editorial, or research   

 letter. Many traditional scientific journals offer narrative or commentary pieces that   

 may be published faster than traditional research articles. These articles still    

 provide credibility for the research and the authors but in less time than    

 traditional research articles take. For example, an urgent call to     

 address gaps in race data when describing COVID-19 vaccination     

 rates may be appropriate for a journal perspective rather than original research.   

 Such information is descriptive, but is critical for future inferences to be made.   

 Case studies may also be a route for publishing research using RWD.

2. Consider open access or open network journals. Many open access journals still   

 adhere to a rigorous peer review process but commonly commit to faster    

 publication than traditional print journals. Even well-established print journals are   

 beginning to offer open access publication options. As with any     

 journal submission, authors should be wary of “pay-to-publish”     

 outlets and select an open access journal that is reputable and geared toward the   

 target audience. Several open access journal directories and databases that    

 publish journal performance metrics such as impact factor are available to    

 help make this determination.

3. Submit for publication as abstract or in proceedings. Some scientific meetings   

 publish abstracts or proceedings documents, which, depending on timing of the   

 conference, may be available more expeditiously. 
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Once published, dissemination efforts can further include:

• Issuing a press release.

• Sharing with colleagues and thought leaders via email blasts.

• Linking to the publication on social media (and even boosting posts for broader   

 reach). If you leverage social media to disseminate findings or publications, be   

 prepared to monitor and engage the space appropriately. Otherwise, the    

 conversation may introduce inappropriate interpretation. 

• Writing guest blog posts.

• Using the paper to spur discussion on podcasts, conferences, and other avenues to   

 connect with interested stakeholders.

Tips for Developing a Communications Plan
Researchers can use crafting a plan to disseminate RWE research to help identify target 

audiences, refine messages, and select communication pathways to share findings 

effectively. The foundation of such a plan is clearly defining and prioritizing the audience 

or audiences that need to be reached. Audiences should typically include internal 

groups (i.e., colleagues) as well as external groups, such as the scientific community, 

decision-makers (e.g., clinicians, policy-makers), and the general public. The latter 

is a commonly ignored but important audience for the communication of scientific 

evidence, considering the growing reach of misinformation and distrust in science. 

Messaging
Once the target audience(s) is/are identified, effective messaging should perform 4 

interrelated tasks:

1. Identify the science most relevant to the decisions that people face

2. Understand what people already know

3. Fill the critical gaps between what people know and need to know

4. Evaluate the adequacy of those communications

A clinical audience may want to better understand the nuances of specific treatments 

with diverse groups, while a general audience may want to better understand the 

overall risk-benefit. 
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Methods to increase relevancy of scientific findings include the tailoring of language, 

illustrations, and anecdotes:

• Use analogies and visuals. Consider the different ways people consume information. 

• Address the question, “What’s in it for me?” to keep your audience interested.

• Avoid jargon. 

The “elevator speech” is an effective approach to thinking about how to create a 

positive and memorable impression in a short period of time. It is also a valuable 

exercise for researchers to ensure effective communications about RWE. When crafting 

communications about RWE, an author should be able to answer several questions 

clearly and concisely:

• What is the topic or focus of the research?

• What is the core problem, issue, or question being asked or addressed in the  

 research? This can be a compelling introduction to the research.

• How is the work uniquely addressing this problem, issue, or question? 

• Why is the problem interesting and important? In other words, “So what?” 

• Finally, what is the goal or aim of the communication? Or what is the call to action? 
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The Covid-19 Evidence Accelerator fosters engagement, explores 

new topics, builds collaboration, and advances the use of real-

world data to inform our nation’s pandemic response. The Evidence 

Accelerator will continue its evolution to address other public health 

and regulatory priorities.

Responding to the novel coronavirus pandemic inspired 

unprecedented collaboration and cooperation in the health and 

research communities. In March 2020, at the request of the FDA, the 

Reagan-Udall Foundation for the FDA, in collaboration with Friends 

of Cancer Research, created the COVID-19 Evidence Accelerator — a 

forum for stakeholders across the health care spectrum to share real-

world data and to generate ideas on how to deal with COVID-19.


